
Programming using C# .Net 18MCA51

[Type here] [Type here] [Type here]

BMS Institute of Technology and Management

Department of MCA

Subject : PROGRAMMING USING C#

.NET

Subject Code 18MCA51

Module

Number

Module Name Page Number

1 Getting started with .Net framework and C# 1-25

2 classes, objects and object oriented

programming

26-74

3 Delegates, Events, Exception handling and ADO

.Net

75-106

C# PROGRAMMING & .NET

1

MODULE 1: Getting started with .Net framework and

C#

UNDERSTANDING THE PREVIOUS STATE OF AFFAIRS

Life as a C Programmer
• C is a very complex language because the programmers were forced to deal with

→ manual memory management

→ ugly pointer arithmetic

→ ugly syntactic-constructs

• C is a structured language and

so lacks the benefits provided by object-oriented approach.

• When thousands of global-functions & data-types defined by the Win32 API are combined to a

difficult language like C, bugs will increase rapidly.
Life as a C++ Programmer

• Though C++ provides OOPs concepts like encapsulation, inheritance & polymorphism, C++

programming remains a difficult & error-prone experience, given its historical roots in C.
Life as a Visual Basic 6.0 Programmer
• VB6 is popular due to its ability to build

→ complex user interfaces

→ code libraries &

→ simpler data access logic

• The major downfall of VB is that it is not a fully object-oriented language, but rather "object-

aware".
For example,

→ It does not allow to establish "is-a" relationships between types

→ It does not support the ability to build multi-threaded applications

→ It has no support for parameterized class construction

Life as a Java Programmer

• Java has greater strength because of its platform independence nature.

• Main problem with using Java: “we must use Java front-to-back during development cycle”.

• Pure java is simply not appropriate for graphically intensive applications due to its slow

execution-speed.
• Java provides a limited ability to access non-Java APIs and

hence, there is little support for true cross-language integration.
Life as a Windows-DNA Programmer

• The popularity of Web-applications is ever expanding. Sadly, building a web-application using

COM-based Windows-DNA is quite complex.

• Some of this complexity is because Windows-DNA requires use of numerous languages like

ASP, HTML, XML, JavaScript, VBScript, ADO etc.
• Many of these technologies are completely unrelated from a syntactic-point of view.

C# PROGRAMMING & .NET

2

It is literally true that you can succeed best and quickest by helping others to succeed.

C# PROGRAMMING & .NET

3

THE .NET SOLUTION

Full Interoperability with Existing Win32code
• Existing COM binaries can inter-operate with newer .NET binaries & vice versa.

• Also, PInvoke(Platform invocation) can be used to invoke raw C-based functions from

managed-code.
Complete & Total Language Integration

• .NET supports

→ cross language inheritance

→ cross language exception-handling &

→ cross language debugging

A Common Runtime Engine Shared by all .NET-aware languages

• Main feature of this engine is "a well-defined set of types that each .NET-aware language

understands".
A Base Class Library that

→ protects the programmer from the complexities of raw API calls

→ offers a consistent object-model used by all .NET-aware languages

A Truly Simplified Deployment Model

• Under .NET, there is no need to register a binary-unit into the system-registry.

• .NET runtime allows multiple versions of same *.dll to exist in harmony on a single machine.

No more COM plumbing IClasFactory, IUnknown, IDispatch, IDL code and the evil VARIANT

compliant data-types have no place in a native .NET binary.

C# LANGUAGE OFFERS THE FOLLOWING FEATURES
• No pointer required. C# programs typically have no need for direct pointer manipulation.

• Automatic memory management through garbage-collection. Given this, C# does not support a

delete keyword.
• Formal syntactic-constructs for enumerations, structures and class properties.

• C++ like ability to overload operators for a custom type without the complexity.

• Full support for interface-based programming techniques.

• Full support for aspect-based programming techniques via attributes. This brand of development

allows to assign characteristics to types and their members to further qualify the behavior.

Positive thinking will let you do everything better than negative thinking will.

C# PROGRAMMING & .NET

4

THE BUILDING BLOCKS OF THE .NET PLATFORM

• .NET can be understood as
→ a new runtime environment &

→ a common base class library (Figure:1-1)

• Three building blocks are:
→ CLR (Common Language Runtime)

→ CTS (Common Type System)

→ CLS (Common Language Specification)

• Runtime-layer is referred to as CLR.

• Primary role of CLR: to locate, load & manage .NET types (types means UDTs).

• In addition, CLR is also responsible
→ automatic memory-management

→ language-integration &

→ ensuring type-safety

• CTS

→ describes all possible data-types & programming-constructs supported by runtime

→ specifies how these entities interact with each other &

→ specifies how they are represented in metadata format

• CLS define a subset of common data-types & programming-constructs that all .NET aware-languages

can agree on.
• Thus, the .NET types that expose CLS-compliant features can be used by all .NET-aware languages.

• But, a data type(or programming construct), which is outside the bounds of the CLS, may not be

used by every .NET programming language.
The Role of Base Class Library (BCL)

• BCL is a library of functionality available to all .NET-aware languages.

• This encapsulates various primitives for
→ file reading & writing

→ threads

→ file IO

→ graphical rendering

→ database interaction

→ XML document manipulation

→ programmatic security

→ construction of web enabled front end

The purpose of human life is to show compassion and the will to help others.

C# PROGRAMMING & .NET

5

AN OVERVIEW OF .NET BINARIES

• Regardless of which .NET-aware language we choose (like C#, VB.NET, VC++.NET etc),
→.NET binaries take same file-extension (.exe or .dll)

→.NET binaries have absolutely no internal similarities (Figure: 1-2)

• .NET binaries do not contain platform-specific instruction but rather platform-agnostic "Common

Intermediate Language (CIL)”.

• When .NET binary is created using a .NET-aware compiler, the resulting module is bundled into an

assembly.

• An assembly is a logical grouping of one or more related modules (i.e. CIL, metadata, manifest) that

are intended to be deployed as a single unit.
• The assembly contains

1) CIL-code which is not compiled to platform-specific instructions until absolutely-necessary.

Typically "absolutely-necessary" is the point at which "a block of CIL instructions" are

referenced for use by the runtime-engine.

2) Metadata that describes the characteristics of every "type" living within the binary.

3) Manifest: Assemblies themselves are also described using metadata, which is termed as

manifest. The manifest contains information such as
→ name of assembly/module
→ current version of assembly

→ list of files in assembly

→ copyright information

→ list of all externally referenced assemblies required for proper execution

Managed code & unmanaged code

• C# produces the code that can execute within the .NET runtime. The code targeting the .NET

runtime is called as managed-code.
• Conversely, code that cannot be directly hosted by the .NET runtime is termed unmanaged-code.

Achievement seems to be connected with action. Successful men and women keep moving.

They make mistakes, but they don't quit.

C# PROGRAMMING & .NET

6

SINGLE-FILE AND MULTI-FILE ASSEMBLIES

• Single-file assemblies contain all the necessary CIL, metadata and manifest in a single well-defined

package. (Package means folder).

• On the other hand, multi-file assemblies are composed of numerous .NET binaries, each of which is

termed a module.
• In a multiple assembly,

one of the module (termed as primary module) must contain the assembly-manifest.

The other related modules contain a module-level manifest, CIL and type metadata.
• The primary-module maintains the set of required secondary-modules within the assembly manifest.

• Multifile assemblies are used when different modules of the application are written in different

languages.
• Q: Why would we choose to create a multi-file assembly?

Ans: Multifile assemblies make the downloading process more efficient. They enable us to store the

rarely used types in separate modules and download them only when needed.

ROLE OF CIL

• CIL is a language that sits above any particular platform-specific instruction set.

• Regardless of which .NET-aware language we choose (like C#, VB.NET, VC++.NET etc), the associated

compiler produces CIL instructions.

• Once the C# complier (csc.exe) compiles the source code file, we end up with a single file *.exe

assembly that contains a manifest, CIL instructions and metadata describing each aspect of the program.
Benefits of CIL

• Language Integration: Each .NET-aware language produces the same underlying-CIL. Therefore, all

.NET-aware languages are able to interact within a well-defined binary arena.

• Since CIL is platform-agnostic, the .NET runtime is poised to become a platform-independent

architecture. Thus, .NET has the potential to allow us to develop an application in any language and have

it run on any platform.

Success is the maximum utilization of the ability that you have.

C# PROGRAMMING & .NET

6

For Solved Question Papers of UGC-NET/GATE/SET/PGCET in Computer Science, visit http://victory4sure.weebly.com/

THE ROLE OF METADATA

• Metadata describes each and every type (class, structure, enumeration) defined in the binary, as well

as the members of each type (properties, methods, events).

• This describes each externally referenced assembly that is required by the executing assembly to

operate correctly.
• This is used

→ by numerous aspects of the .NET runtime environment

→ by various development tools

→ by various object browsing utilities, debugging tools and even the C# compiler itself

• This is the backbone of numerous .NET technologies such as .NET Remoting, reflection services and

object serialization.

• Consider the following example

• Within the resulting "MetaInfo" window, we will find a description of the Add() method looking

something like the following:

• In above metadata, we can see that Add() method, return type and method arguments have been
fully described by the C# compiler.

THE ROLE OF MANIFEST
• Assemblies themselves are also described using metadata, which is termed as manifest.
• The manifest contains information such as

→ name of assembly/ module → current version of the assembly

→ list of files in assembly → copyright information

→ list of all externally referenced assemblies required for proper execution

COMPILING CIL TO PLATFORM-SPECIFIC INSTRUCTIONS

• Assemblies contain CIL instructions and metadata, rather than platform-specific instructions.

• CIL must be compiled on-the-fly before use.
• Jitter(Just-in-time compiler) is used to compile the CIL into meaningful CPU instructions.

• The .NET runtime environment forces a JIT compiler for each CPU targeting the CLR, each of which is

optimized for the platform it is targeting.

• Developers can write a single body of code that can be efficiently JIT-compiled and executed on

machines with different architectures. For example,
→ If we are building a .NET application that is to be deployed to a handheld device (such as a

Pocket PC), the corresponding Jitter is well equipped to run within a low-memory environment.
→ On the other hand, if we are deploying our assembly to a back-end server (where memory is

seldom an issue), the Jitter will be optimized to function in a high-memory environment

• Jitter will cache the results in memory in a manner suited to the target OS. For example, if a call is

made to a method named PrintDocument(), the CIL instructions are compiled into platform-specific

instructions on the first invocation and retained in memory for later use. Therefore, the next time

PrintDocument() is called, there is no need to recompile the CIL.

A champion is someone who gets up when he can't.

//the C# calculator

public class Calc
{

public int Add(int x,int y)
{ return x+y;}

}

Method #2

MethodName: Add (06000002)
RVA: 000002064
ImplFlags: [IL] [Managed] (00000000)
hasThis
ReturnType: I4
2 Arguments
Argument #1: I4
Argument #2: I4
2 Parameters
(1) ParamToken: (08000001) Name: x flags: [none] (00000000)
(2) ParamToken: (08000002) Name: y flags: [none] (00000000)

http://victory4sure.weebly.com/

C# PROGRAMMING & .NET

7

UNDERSTANDING THE CTS

• A given assembly may contain any number of distinct “types”.
• In the world of .NET, “type” is simply a generic term used to refer to a member from the set {class,
structure, interface, enumeration, delegate}.
• CTS

→ fully describes all possible data-types & programming constructs supported by the runtime

→ specifies how these entities can interact with each other &

→ details of how they are represented in the metadata format

• When we wish to build assemblies that can be used by all possible .NET-aware languages, we need to

conform our exposed types to the rules of the CLS.

CTS Class Types

• Class consists of number of members (methods, constructor) and data points (fields).

• CTS allow a given class to support virtual and abstract members that define a polymorphic interface

for derived class.
• Classes may only derive from a single base class; multiple inheritances are not allowed for class.

• In C#, classes are declared using the class keyword. For example,

Class
Characteristic

Meaning

Is the class “sealed”
or not?

Sealed classes cannot function as a base class to other classes.

Does the class
implement any
interfaces?

An interface is a collection of abstract members that provide a
contract between the object and object-user. The CTS allows a
class to implement any number of interfaces.

Is the class abstract

or concrete?

Abstract classes cannot be directly created, but are intended to

define common behaviors for derived types. Concrete classes
can be created directly.

What is the

“visibility” of this

class?

Each class must be configured with a visibility attribute.

Basically, this feature defines if the class may be used by

external assemblies, or only from within the defining assembly

(e.g., a private helper class).

CTS Interface Type

• Interface is a named collection of abstract member definitions, which may be supported by a given

class or structure.
• Interfaces do not derive from a common base type (not even System.Object).

• When a class/structure implements a given interface, we are able to request access to the supplied

functionality using an interface-reference (in a polymorphic manner).

• When we create custom interface using a .NET-aware language, the CTS allows a given interface to

derive from multiple base interfaces.
• In C#, interface types are defined using the interface keyword, for example:

Desire is the starting point of all achievement, not a hope, not a wish, but a keen pulsating desire which transcends

everything.

// A C# class type

public class Calc
{

public int Add(int x, int y)
{

return x + y;
}

}

// A C# interface type.

public interface IDraw
{

void Draw();
}

C# PROGRAMMING & .NET

8

CTS Structure Types

• A structure can be thought of as a lightweight type having value-semantics.
• Structure may define any number of parameterized constructors.
• All structures are derived from a common base class: System.ValueType.

• This base class configures a type to behave as a stack-allocated entity rather than a heap-allocated

entity.
• Structures can implement any number of interfaces.

• Structures may not become a base type to any other classes or structures. Therefore structures are

explicitly sealed.
• In C#, structure is declared using the struct keyword. For example,

CTS Enumeration Types

• Enumeration is used to group name/value pair under a specific name.

• By default, the storage used to hold each item is a System.Int32 (32-bit integer).

• Enumerated types are derived from a common base class, System.Enum This base class defines a

number of interesting members that allow extracting, manipulating, and transforming the underlying

name/value pairs programmatically.

• Consider an example of creating a video-game application that allows the player to select one of three

character categories (Wizard, Fighter, or Thief). Rather than keeping track of raw numerical values to

represent each possibility, we could build a custom enumeration as:

CTS Delegate Types
• Delegates are the .NET equivalent of a type-safe C-style function pointer.

• The key difference is that a .NET delegate is a class that derives from System.MulticastDelegate,

rather than a simple pointer to a raw memory address.
• Delegates are useful when we wish to provide a way for one entity to forward a call to another entity.

• Delegates provide intrinsic support for multicasting, i.e. forwarding a request to multiple recipients.

• They also provide asynchronous method invocations.
• They provide the foundation for the .NET event architecture.

• In C#, delegates are declared using the delegate keyword as shown in the following example:

The secret of happiness is to count your blessings while others are adding up their troubles.

// A C# structure type

struct Point
{

// Structures can contain fields.
public int xPos, yPos;
// Structures can contain parameterized constructors.
public Point(int x, int y)
{

xPos = x;
yPos = y;

}

// Structures may define methods.
public void Display()
{

Console.WriteLine("({0}, {1})", xPos, yPos);
}

}

// A C# enumeration

public enum playertype
{

wizard=10,
fighter=20,
thief=30

};

// This C# delegate type can 'point to' any method

// returning an integer and taking two integers as input.

public delegate int BinaryOp(int x, int y);

C# PROGRAMMING & .NET

9

UNDERSTANDING THE CLS

• The CLS is a set of rules that describe the small and complete set of features.
• These features are supported by .NET-aware compiler to produce a code that can be hosted by CLR.
• Also, this code can be accessed by all languages in the .NET platform.

• CLS refers to physical subset of the full functionality defined by the CTS.

• The CLS is a set of rules that compiler-builders must conform to, if they intend their products to

function seamlessly within the .NET-universe.

• Each rule describes how this rule affects those who build the compilers as well as those who interact

with them. For example, the CLS Rule 1 says:
Rule 1: CLS rules apply only to those parts of a type that are exposed outside the defining assembly.

• Given this rule, we can understand that the remaining rules of the CLS do not apply to the logic used

to build the inner workings of a .NET type.

• The only aspects of a type that must match to the CLS are the member definitions themselves (i.e.,

naming conventions, parameters, and return types).

• The implementation logic for a member may use any number of non-CLS techniques, as the outside
world won’t know the difference.

• To illustrate, the following Add() method is not CLS-compliant, as the parameters and return values

make use of unsigned data (which is not a requirement of the CLS):

• We can make use of unsigned data internally as follows:

• Now, we have a match to the rules of the CLS, and can assured that all .NET languages are able to

invoke the Add() method.

Ensuring CLS compliance

• C# does define a number of programming constructs that are not CLS-compliant. But, we can instruct

the C# compiler to check the code for CLS compliance using a single .NET attribute:
// Tell the C# compiler to check for CLS compliance.
[assembly: System.CLSCompliant(true)]

• This statement must be placed outside the scope of any namespace. The [CLSCompliant] attribute will

instruct the C# compiler to check each and every line of code against the rules of the CLS. If any CLS

violations are discovered, we will receive a compiler error and a description of the offending code.

Successful people ask better questions, and as a result, they get better answers.

public class Calc

{
// Exposed unsigned data is not CLS compliant!
public ulong Add(ulong x, ulong y)
{

return x + y;
}

}

public class Calc

{
public int Add(int x, int y)
{

// As this ulong variable is only used internally,
// we are still CLS compliant.
ulong temp;
temp= x+y;

return temp;
}

}

C# PROGRAMMING & .NET

10

UNDERSTANDING THE CLR

• The runtime can be understood as a collection of external services. These services are required to

execute a given compiled unit-of-code. (Figure: 1-3)
• .NET runtime provides a single well-defined runtime layer that is shared by all .NET aware languages.

• The heart of CLR is physically represented by an assembly named mscoree.dll (Common Object

Runtime Execution Engine).
• When an assembly is referenced for use,

mscoree.dll is loaded automatically,

which in turn loads the required assembly into memory.
• Runtime-engine

→ places the type in memory

→ compiles the associated CIL into platform-specific instruction

→ performs any security checks and

→ then executes the code

• In addition, runtime-engine is responsible for
→ resolving location of an assembly and

→ finding requested type within binary by reading contained-metadata

→ interacting with the types contained within the BCLs

• mscorlib.dll assembly contains a large number of core types. The core types encapsulate a wide

variety of common programming tasks used by all .NET languages.

The poor, the unsuccessful, the unhappy, the unhealthy are the ones who use the word tomorrow the most.

C# PROGRAMMING & .NET

11

A TOUR OF THE .NET NAMESPACES

• C# language does not come with a pre-defined set of language-specific classes.
• There is no C# class library. Rather, C# developers use existing types supplied by .NET framework.

• Advantage of namespaces: Any language targeting the .NET runtime makes use of same namespaces

and same types as a C# developer.

• Namespace refers to grouping semantically related types (classes, enumerations, interfaces,

delegates and structures) under a single name.

For example, System.IO namespace contains file I/O related types

System.Data namespace defines basic database types, and so on

• In above code, each language is making use of “Console” class defined in the “System” namespace.
• "System" namespace provides a core body of types that we will need to use as a .NET developers.

• We cannot build any sort of functional C# application without making a reference to the "System"

namespace.

• “System" is the root namespace for numerous other .NET namespaces.

.NET NAMESPACES

System

In this, we find numerous low-level classes dealing with primitive types, mathematical

manipulations, garbage collection, exceptions and predefined attributes.
System.Collections

This defines a number of stock container objects (ArrayList, Queue, etc) as well as base types

and interfaces that allow us to build customized collections.
System.Data.OleDb

These are used for database manipulation.

System.Diagnostics

In this, we find numerous types that can be used by any .NET-aware language to

programmatically debug and trace our source code.
System.Drawing System.Drawing.Printing

In this, we find numerous types wrapping GDI+ primitives such as bitmaps, fonts, icons,

printing support, and advanced graphical rendering support.
System.IO

This includes file IO and buffering.
System.Net

This contains types related to network programming (requests/responses, sockets, end points)

System.Security

In this, we find numerous types dealing with permissions, cryptography and so on.
System.Xml

This contains numerous types that represent core XML primitives and types used to interact

with XML data.
System.Threading

This deals with threading issues. In this, we will find types such as Mutex, Thread and Timeout.

There's always a way - if you're committed.

//Hello world in C#

using System;
public class MyApp
{

public static void Main()
{

Console.WriteLine("hi from C#");
}

}

'Hello world in VB.NET

Imports System
Public Module MyApp

Sub Main()
Console.WriteLine("hi from VB.NET")

End Sub
End Module

C# PROGRAMMING & .NET

12

System.Windows

This facilitates the construction of more traditional main windows, dialog boxes and custom

widgets.
System.Web

This is specifically geared toward the development of .NET Web applications, including ASP.NET

& XML Web services.

Accessing a Namespace Programmatically
• In C#, the “using” keyword simplifies the process of referencing types defined in a particular

namespace. In a traditional desktop application, we can include any number of namespaces like –
using System; // General base class library types.
using System.Drawing; // Graphical rendering types.

• Once we specify a namespace, we can create instances of the types they contain. For example, if we

are interested in creating an instance of the Bitmap class, we can write:

• As this application is referencing System.Drawing, the compiler is able to resolve the Bitmap class as

a member of this namespace. If we do not specify the System.Drawing namespace, we will get a

compiler error. However, we can declare variables using a fully qualified name as well:

Following Techniques can be used to learn more about the .NET Libraries

• .NET SDL online documentation

• The ildasm.exe utility

• The class viewer web application.

• The wincv.exe desktop application.

Deploying the .NET Runtime
• The .NET assemblies can be executed only on a machine that has the .NET Framework installed.

• But, we can not copy and run a .NET application in a computer in which .NET is not installed. However,

if we deploy an assembly to a computer that does not have .NET installed, it will fail to run. For this

reason, Microsoft provides a setup package named dotnetfx.exe that can be freely shipped and installed

along with our custom software.

• Once dotnetfx.exe is installed, the target machine will now contain the .NET base class libraries, .NET

runtime (mscoree.dll), and additional .NET infrastructure (such as the GAC, Global Assembly Cashe).

Knowledge is power. The more knowledge, expertise, and connections you have, the easier it is for you to make a profit

at the game of your choice.

using System;
using System.Drawing;
class MyApp

{
public void DisplayLogo()
{

// create a 20x20 pixel bitmap.
Bitmap bm = new Bitmap(20, 20);
...

}
}

using System;

class MyApp
{

public void DisplayLogo()
{

// Using fully qualified name.
System.Drawing.Bitmap bm =new
System.Drawing.Bitmap(20, 20);
...

}
}

C# PROGRAMMING & .NET

13

INTRINSIC CTS DATA TYPES

.NET Base Type

(CTS Data Type)

VB.NET
Keyword

C# Keyword Managed Extensions

for C++ Keyword
System.Byte Byte byte unsigned char

System.SByte SByte sbyte signed char

System.Int16 Short short short

System.Int32 Integer int int or long

System.Int64 Long long int64

System.UInt16 UShort ushort unsigned short

System.Single Single float Float

System.Double Double double Double

System.Object Object object Object^

System.Char Char char wchar_t

System.String String string String^

System.Decimal Decimal decimal Decimal

System.Boolean Boolean bool Bool

EXERCISES

1) Briefly discuss state of affairs that eventually led to .NET platform. (8)
2) Explain .NET solution. (4)
3) What are the key features of C#? (4)
4) With a neat diagram, explain basic building block of .NET framework. (8)
5) What do you mean by Base class library? Explain. (2)
6) Explain the concept of .NET binaries. (6)

7) Bring out important differences b/w single and multifile assemblies. (4)
8) Explain the role of CIL and the benefits of CIL. (4)
9) Explain the role of JIT compiler. (6)
10) What are basic CTS data types? Explain. (8)
11) Explain common type system in detail. (6)
12) Explain with a neat diagram, the workflow that takes place between your source

code, a given .NET complier and the .NET execution engine. (8)

13) What are namespaces? List and explain the purpose of at least five namespaces. (6)

Other people's opinion of you does not have to become your reality.

C# PROGRAMMING & .NET

14

UNIT 2: BUILDING C# APPLICATIONS

BUILDING A C# APPLICATION USING csc.exe

• Consider the following code:

• Once finished writing the code in some editor, save the file as TestApp.cs

• To compile & run the program, use the following command-set:

• List of Output Options of the C# Compiler:

/out : This is used to specify name of output-file to be created. By default, name of output-file

is same as name of input-file.
/target:exe :This builds an executable console application. This is the default file output-type.
/target:library :This option builds a single-file assembly.

/target:module :This option builds a module. Modules are elements of multi-file assemblies.

/target:winexe :Although we are free to build windows-based applications using /target:exe

flag, this flag prevents an annoying console window from appearing in the background.

REFERENCING EXTERNAL ASSEMBLIES

• Consider the following code:

• As we know, mscorlib.dll is automatically referenced during the compilation process.

But if we want to disable this option, we can specify using /nostdlib flag.

• Along with "using" keyword, we must also inform compiler which assembly contains the referenced

namespace. For this, we can use the /reference(or /r) flag as follows:
csc /r:System.Windows.Forms.dll TestApp.cs

• Now, running the application will give the output as –

Your future is created by what you do today, not tomorrow.

using System;

class TestApp
{

public static void Main()
{

Console.WriteLine("Testing 1 2 3");
}

}

Output:

C:\CSharpTestApp> csc TestApp.cs
C:\CSharpTestApp> TestApp.exe

Testing 1 2 3

using System;

using System.Windows.Forms;
class TestApp
{

public static void Main()
{

MessageBox.Show("Hello . . .");
}

}

C# PROGRAMMING & .NET

15

COMPILING MULTIPLE SOURCE FILES

• When we have more than one source-file, we can compile them together. For illustration, consider

the following codes:
File Name: HelloMessage.cs

File Name: TestApp.cs

• We can compile C# files by listing each input-file explicitly:

csc /r:System.Windows.Forms.dll testapp.cs hellomsg.cs

• As an alternative, we can make use of the wildcard character(*) to inform the compiler to include all

*.cs files contained in the project-directory.

• In this case, we have to specify the name of the output-file(/out) to directly control the name of the

resulting assembly:
csc /r:System.Windows.Forms.dll /out:TestApp.exe *.cs

REFERENCING MULTIPLE EXTERNAL ASSEMBLIES

• If we want to reference numerous external assemblies, then we can use a semicolon-delimited list.

For example:
csc /r:System.Windows.Forms.dll; System.Drawing.dll *.cs

WORKING WITH csc.exe RESPONSE FILES

• When we are building complex C# applications, we may need to use several flags that specify

numerous referenced assemblies and input-files.
• To reduce the burden of typing those flags every time, the C# compiler provides response-files.

• Response-files contain all the instructions to be used during the compilation of a program.
• By convention, response-files end in a *.rsp extension.

• Consider we have created a response-file named "TestApp.rsp" that contains the following

arguments:

• Save this response-file in the same directory as the source-files to be compiled. Now, we can build
our entire application as follows:

csc @TestApp.rsp

• Any flags listed explicitly on the command-line will be overridden by the options in a given response-

file. Thus, if we use the statement,
csc /out:Foo.exe @TestApp.rsp

• The name of the assembly will still be TestApp.exe(rather than Foo.exe),given the /out:TestApp.exe

flag listed in the TestApp.rsp response-file.

Determination gives you the resolve to keep going in spite of the roadblocks that lay before you.

using System;
using System.Windows.Forms;
class HelloMessage
{

public void Speak()
{

MessageBox.Show("Hello . . .");
}

}

using System;

class TestApp
{

public static void Main()
{

Console.WriteLine("Testing 1 2 3");
HelloMessage h= new HelloMessage();
h.Speak();

}
}

this is the response file for the TestApp.exe application

external assembly reference
/r: System.Windows.Forms.dll
#output and files to compile using wildcard syntax
/target:exe /out:TestApp.exe *.cs

C# PROGRAMMING & .NET

16

THE DEFAULT RESPONSE FILE (csc.rsp)

• C# compiler has an associated default response-file(csc.rsp), which is located in the same directory

as csc.exe itself (e.g., C:\Windows\Microsoft.NET\Framework\v2.0.50215).

• If we open this file using Notepad, we can see that numerous .NET assemblies have already been

specified using the /r: flag.

• When we are building our C# programs using csc.exe, this file will be automatically referenced, even

if we provide a custom *.rsp file.

• Because of default response-file, the current Test.exe application could be successfully compiled

using the following command set
csc /out:Test.exe *.cs

• If we wish to disable the automatic reading of csc.rsp, we can specify the /noconfig option:
csc @Test.rsp /noconfig

GENERATING BUG REPORTS

• /bugreport flag allows to specify a file that will be populated with any errors encountered during the

compilation-process. The syntax for using this flag is–
csc /bugreport: bugs.txt *.cs

• We can enter any corrective information for possible errors in the program, which will be saved to the

specified file (i.e. bugs.txt).

• Consider the following code with an error (bug):

• When we compile this file using /bugreport flag, the error message will be displayed and corrective
action is expected as shown –

Test.cs (23, 11): Error CS1002: ; expected

Please describe the compiler problem: _

• Now if we enter the statement like
“FORGOT TO TYPE SEMICOLON”

then, the same will be stored in the ‘bugs.txt’ file.

The hardest thing to learn in life is which bridge to cross and which to burn.

public static void Main()

{
HelloMessage h=new HelloMessage();
h.Speak() // error occurs because ; is missing

}

C# PROGRAMMING & .NET

17

OPTIONS OF THE C# COMMAND LINE COMPILER

/target
This is used to specify format of output-file.

/out

This is used to specify name of output-file.

/nostdlib

This is used to prevent automatic importing of core .NET library ‘mscorlib.dll’.
/reference

This is used to reference an external assembly.

@

This allows to specify a response-file used during compilation.
/noconfig

This is used to prevent use of response-files during the current compilation.

/bugreport

This is used to build text-based bug-reports for the current compilation.

/main

This is used to specify which Main() method to use as the program's entry point, if multiple

Main() methods have been defined in the current *.cs file-set.
/? Or /help

This prints out list of all command-line flags of compiler.

/addmodule
This is used to specify modules to be added into a multi-file assembly.
/nologo

This is used to suppress banner-information when compiling the file.

/debug
This forces compiler to emit debugging-information.
/define

This is used to define pre-processor symbols.

/optimize

This is used to enable/disable optimizations.

/warn
This is used to set warning-level for the compilation cycle.
/doc

This is used to construct an XML documentation-file.

/filealign

This is used to specify size of sections in output-file.
/fullpaths

This is used to specify absolute path to the file in compiler output.

/incremental

This is used to enable incremental compilation of source-code files.
/lib

This is used to specify location of assemblies referenced via /reference.

/linkresource

This is used to create a link to a managed-resource.

/baseaddress

This is used to specify preferred base-address at which to load a *.dll

/checked

This is used to specify the code-page to use for all source-code files in the compilation.

With better awareness come better choices. And with better choices, you’ll see better results

C# PROGRAMMING & .NET

18

THE COMMAND LINE DEBUGGER (cordbg.exe)

• This tool provides various options that allow running our assemblies under debug-mode.

• We may view options by specifying the -? Flag:
cordbg -?

• List of cordbg.exe flags are:

b[reak] :Set or display current breakpoints

del[ete] :Remove one or more breakpoints

ex[it] :exit the debugger
g[o] :continue debugging the current process until hitting next breakpoint

si :step into the next line

o[ut] :step out of the current function

so :step over of the next line

p[rint] :print all loaded variables

Debugging at the Command Line

• Firstly generate symbolic debugging symbols for the current application by specifying the /debug flag

of csc.exe:
csc @testapp.rsp /debug

• The above command-set generates a new file named testapp.pdb. If we do not have an associated

*.pdb file, it is still possible to make use of cordbg.exe, however, we will not be able to view our C#

source code during the process.

• Once we have a valid *.pdb file, open a session with cordbg.exe by specifying our assembly as a

command line argument(the *.pdb file will be loaded automatically):
cordbg.exe testapp.exe

• At this point, we are in debugging mode, and may apply any number of cordbg.exe flags at the

(cordbg)" command prompt.

CORE PROJECT WORKSPACE TYPES IN VS.NET IDE

Windows Application

This represents a windows forms application.

Class Library

This allows building a single file assembly.

Windows Control Library

This allows building a single file assembly that contains custom windows forms controls.
ASP.NET Web Application

This is selected when we want to build an ASP.NET web application.

ASP.NET Web Service

This allows to build a .NET web services. A web service is a block of code, reachable using HTTP

requests.
Web Control Library

This allows to build customized web controls. These GUI widgets are responsible for emitting

HTML to a requesting browser.
Windows Services

This allows to build NT/2000 services. These are background worker applications that are

launched during the OS boot process.

Refuge to be average. Stand for what's best. Commit to being breathtakingly great in all you do.

C# PROGRAMMING & .NET

19

THE STRUCTURE OF A VS.NET CONSOLE APPLICATION

\bin\Debug

This folder contains the debug version of our compiled assembly. If we configure a release build,

a new folder (\bin\Release) will be generated that contains a copy of our assembly, stripped of

any debugging information.
\obj*

This folder consists of numerous subfolders used by VS.NET during the compilation process.

App.ico

This file is used to specify the icon for the current program.

AssemblyInfo.cs

This file allows establishing assembly-level attributes for our current project.
Class1.cs

This file is our initial class file.

*.csproj

This file represents a C# project that is loaded into a given solution.

*.sln

This file represents the current VS.NET solution.

RUNNING VERSUS DEBUGGING

• When we run an application, we are instructing .NET runtime to ignore all breakpoints to

automatically prompt for a keystroke before terminating the current console window.

• On the other hand, if we debug an application that does not have any breakpoints set, the console

application terminates so quickly that we will be unable to view the output.

• To ensure that the command window is alive regardless of the presence of a given breakpoint, add

the following code at the end of the Main() method:

EXAMINING THE SOLUTION EXPLORER WINDOW
• A solution is a collection of one or more projects.

• Each project contains number of source code files, external references and resources that constitute

the application as a whole.

• Regardless of which project workspace type we create, *.sln file can be opened using VS.NET to load

each project in the workspace (Figure: 2.11).

• The solution explorer window provides a class view tab, which shows the object-oriented view of our

project (Figure: 2.12).

The price of discipline is always less than the pain of regret.

static void Main(string[] args)

{
Console.ReadLine(); //keep console window up until user hits return.

}

C# PROGRAMMING & .NET

20

EXAMINING THE SERVER EXPLORER WINDOW

• This window can be accessed using the View menu (Figure: 2.20)

• This window can be thought of as the command center of a distributed application we may be

building.
• Using this, we can

→ attach to and manipulate local and remote databases

→ examine the contents of a given message queue &

→ obtain general machine-wide information

Life is nothing more than a beautiful adventure.

C# PROGRAMMING & .NET

21

DOCUMENTING SOURCE CODE VIA XML

• Q: Why use XML to document type definitions rather than HTML?

Ans:1) Given that XML separates the definition of data from the presentation of that data, we can

apply any number of XML transformations to the raw XML.

2) We can also programmatically read & modify the raw XML using types defined in the

System.Xml.dll assembly.

• When we want to document the types, we have to make use of special comment syntax, /// (rather

than C++ style // or C based comment syntax /* . . . */)
• List of Stock XML Tags:

<c>

This indicates that text within a description should be marked as code.
<code>

This indicates multiple lines should be marked as code.

<example>

This is used to mock-up a code-example for the item we are describing.

<exception>

This is used to document which exceptions a given class may throw.

<list>
This is used to insert a list into the documentation-file.

<param>

This describes a given parameter.
<paramref>

This associates a given XML tag with a specific parameter.

<permission>

This is used to document access-permissions for a member.
<remarks>

This is used to build a description for a given member.

<returns>

This documents the return value of the member.

<see>

This is used to cross-reference related items.
<summary>
This documents the "executive summary" for a given item.

<value>

This documents a given property.

• List of XML Format Characters
N :This denotes a namespace.

T :This represents a type(e.g. ,class, struct, enum, interface)

F :This represents a field.

P :This represents type properties.

M :This represents method including constructors and overloaded operators.

E :This denotes an event.

! :This represents an error string that provides information about the error. The compiler

generates error information for links that cannot be resolved.

Success lies in its execution.

C# PROGRAMMING & .NET

22

Success & failure go hand in hand. They are business partners.

C# PROGRAMMING & .NET

23

C# "PREPROCESSOR" DIRECTIVES

• These are processed as part of the lexical analysis phase of the compiler.
• Like C, C# supports the use of various symbols that allow interacting with the compilation process.
• List of pre-processor directives

#define, #undef

These are used to define and un-define conditional compilation symbols.

#if,#elif, #else, #endif

These are used to conditionally skip sections of source code.

#error, #warning

These are used to issue errors and warnings for the current build.

#region, #endregion
These are used to explicitly mark sections of source-code.

Regions may be expanded and collapsed within the code window; other IDEs will ignore these

symbols.

#line

This is used to control the line numbers emitted for errors and warnings.

CONDITIONAL CODE COMPILATION

• The directives #if, #elif, #else and #endif can be used to conditionally compile a block of code based

on predefined symbols. Consider the following example –

• The output will be:

ISSUING WARNINGS AND ERRORS

• The #warning and #error directives can be used to instruct the C# compiler to generate a warning or

error.
• For example, we wish to issue a warning when a symbol is defined in the current project.

• This is helpful when a big project is handled by many people.

• Consider the following code:

• When we compile, the program will give warning message –

Everything happens for a reason, and there are no accidents in life.

#define MAX 100

using System;

class Test
{

public static void Main()
{

#if(MAX)
Console.WriteLine("MAX is defined");

#else
Console.WriteLine("MAX is not defined");

#endif

}
}

MAX is defined

#define MAX 100
using System;
class Test

{
public static void Main()
{

#if(MAX)
#warning MAX is defined by me!!!

………..
#endif

}
}

1
2
3
4
5
6
7
8

9
10
11
12
13

Test.cs(8,21): warning CS1030: #warning: 'MAX is defined by me!!!'

C# PROGRAMMING & .NET

24

SPECIFYING CODE REGIONS

• #region and #endregion directives can be used to specify a block of code that may be hidden from

view and identified by a textual marker.
• The use of regions helps to keep lengthy *.cs files more manageable.

• For example, we can create a region for defining a type’s constructor (may be class, structure etc),

type’s properties and so on.

• Consider the following code:

• Now, when we put mouse curser on that region, it will be shown as –

The richest person in the world isn't the person who has the most but the one who needs the least.

class Test
{

…….
#region Unwanted

public class sub1
{

…….
}

public interface sub2
{

…………
}
#endregion

}

C# PROGRAMMING & .NET

25

ALTERING LINE NUMBERS

• The #line directive can ce used to alter the compiler’s recognition of line numbers during its

recording of compilation warnings and errors.

• To reset the default line numbering, we can specify default tag. Consider the following code:

• When we compile, the program will give warning message –

• Note that the line number appeared as 300, though the actual line was 7.

THE SYSTEM.ENVIRONMENT CLASS

• This class can be used to obtain a number of details regarding the context of the OS hosting the

application using various static members. For example, consider the following code:

• The Output will be -

EXERCISES:

1. Explain the role of csc.exe. (6)

2. List and explain the basic output options available with C# complier. (6)
3. Explain the following, with respect to compilation of C# program: (6)

i) referencing external assemblies
ii) compiling multiple source files

4. What are response files? Explain with an example. (4)

5. How do you generate bug reports? Illustrate with an example. (6)

6. What are C# preprocessor directives? Explain. (6)
7. Explain the following aspects of VS.NET IDE: (8)

i) Solution Explorer
ii) Running and debugging

iii) Documenting code via XML

Life really is a fragile gift, and it needs to be lived right now. Neither of us knows how many tomorrows we have left.

}

#define MAX 100
using System;
class Test
{

public static void Main()
{

#line 300 //next line will take the number 300
#warning MAX is defined by me!!!

………..
#line default // default numbering will continue

}

1
2
3
4

5
6
7
8
9
10
11
12

Test.cs(300,21): warning CS1030: #warning: 'MAX is defined by me!!!'

using System;

class PlatformSpy
{

public static int Main(strng[] args)
{

Console.WriteLine("Current OS:{0}",Environment.OSVersion);
Console.WriteLine("Current directory :{0}",Environment.CurrentDirectory);

string[] drives=Environment.GetLogicalDrives();
for(int i=0;i<drives.Length;i++)

Console.WriteLine("Drive {0} : {1}",i,drives[i]);

Console.WriteLine("Current version of .NET :{0}",Environment.Version);
return 0;

}
}

Current OS: Microsoft Windows NT 5.1.2600 Service Pack 3

Current directory: C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0
Drive 0: A:\
Drive 1: C:\
Drive 2: D:\
Drive 3: E:\
Drive 4: F:\
Current version of .NET: 2.0.50727.3082

C# PROGRAMMING & .NET

26

Module 2: CLASSES, OBJECTS AND OBJECT ORIENTED

PROGRAMMING
THE ANATOMY OF A BASIC C# CLASS

• Consider the following code:

• All program-logic must be present within a type-definition.
• ‘Type’ may be a member of the set {class, interface, structure, enumeration}.

• Every executable C# program must contain a Main() method within a class.

• Main() is used to signify entry point of the program.

• Public methods are accessible from other types.

• Static methods can be invoked directly from the class-level, without creating an object.

• Main() method has a single parameter, which is an array-of-strings (string[] args).
• args parameter may contain any number of incoming command-line arguments.

• Console class is defined within the ‘System’ namespace.

• Console class contains method-named WriteLine().

• WriteLine() is used to pump a text-string to the standard console.

All the things you don’t like about your life are actually your best friends & greatest teachers because they help you

get to your destination--your ideal life.

using System;

class HelloClass
{

public static int Main(string[] args)
{

Console.WriteLine("hello world\n");
return 0;

}
}

C# PROGRAMMING & .NET

27

PROCESSING COMMAND LINE PARAMETERS

Using Length property of System.Array

• Consider the following code:

• Here, we are checking to see if the array of strings contains some number of items using Length
property of System.Array.
• If we have at least one member in array, we loop over each item & print contents to output window.

Using "foreach" keyword

• Consider the following code:

• foreach loop can used to iterate over all items within an array, without the need to test for the
array’s upper limit.

Using GetCommandLineArgs() method of System.Environment type

• Consider the following code:

• We can also access command line arguments using the GetCommandLineArgs() method of the
System.Environment type.
• First index identifies current directory containing the program itself,

while remaining elements in the array contain the individual command-line arguments.

We have phenomenal power within us, we've just lost connection to it. Part of the reason for this is fear.

using System;

class HelloClass
{

public static int Main(string[] args)
{

Console.WriteLine(" Command line arguments \n ");
for(int i=0;i<args.Length;i++)

Console.WriteLine("Argument:{0} ",args[i]);

return 0;
}

}

using System;

class HelloClass
{

public static int Main(string[] args)
{

Console.WriteLine(" Command line arguments \n ");
foreach(string s in args)

Console.WriteLine("Argument {0}:",s);
}

}

using System;

class HelloClass
{

public static int Main(string[] args)
{

string[] theArgs=Environment.GetCommandLineArgs();
Console.WriteLine("path is :{0}",theArgs[0]);
Console.WriteLine(" Command line arguments \n ");
for(int i=1;i<theArgs.Length;i++)

Console.WriteLine("Arguments :{0}",theArgs)
}

}

Output:

C:\> csc HelloClass.cs

C:\> HelloClass.exe three two
Command line arguments

Argument: three
Argument: two

Output:

C:\> csc HelloClass.cs

C:\> HelloClass.exe three two
path is C:\> HelloClass.cs
Command line arguments

Argument: three
Argument: two

C# PROGRAMMING & .NET

28

CREATING OBJECTS: CONSTRUCTOR BASICS

• Consider the following code:

• A class is a definition of a user defined type(UDT).
• The class can be regarded as a blueprint for variables of this type.

• An object can be described as a given instance of a particular class.
• The "new" keyword is responsible for

→ allocating correct number of bytes for the specified class &

→ acquiring sufficient memory from heap

• Object-variables are actually a reference to the object in memory, not the actual object itself.
(Thus, h1 and h2, each reference a distinct ‘HelloClass’ object allocated on the heap).

• By default, every class is gifted with a default-constructor, which we are free to redefine if needed.

• Default constructor ensures that all member-data is set to an appropriate default values.

• Constructors are named identical to the class they are constructing and do not take a return value.
• C# programmers never explicitly destroy an object.

• The .NET garbage collector frees the allocated memory automatically, and therefore C# does not

support a "delete" keyword.

Shift from trying to control your life to becoming curious about your life.

}
}

Console.WriteLine("h2.intX={0} h2.intY={1}",h2.inX,h2.inY);

return 0;

//trigger custom constructor

Console.WriteLine("h1.intX={0} h1.intY={1}",h1.inX,h1.inY)

HelloClass h2;
h2=new HelloClass(100,255);

//trigger default constructor

public static int Main(string[] args)

{
HelloClass h1=new HelloClass();

//some public state data public int inX,inY;

using System;

class HelloClass
{

//default constructor always assigns state data to default values
public HelloClass()
{

Console.WriteLine("default constructor called");
}

//custom constructor assigns state data to a known value
public HelloClass(int x, int y)
{

Console.WriteLine("custom constructor called");
inX=x;
inY=y;

}

C# PROGRAMMING & .NET

29

DEFAULT ASSIGNMENTS AND VARIABLE SCOPE

• Consider the following code:

• All .NET data types have a default value.
• When we create custom types (i.e. class, struct), all member-variables are automatically assigned to

their appropriate default value.

• When we define variable within a method-scope, we must assign an initial value before we use them,

as they do not receive a default assignment.

• If the variable is functioning as an "output" parameter, the variable does not need to be assigned an

initial value.

• Methods that define output parameters assign incoming variables within their function scope before

the caller makes direct use of them.

BASIC INPUT AND OUTPUT WITH THE CONSOLE CLASS

• Console class encapsulates input, output and error stream manipulations.

• Important methods of Console class:
1. Read() is used to capture a single character from the input-stream.

2. ReadLine() allows to receive information from input-stream up until carriage-return.

3. Write() pumps text to the output-stream without a carriage-return.
4. WriteLine() pumps a text string (including a carriage-return) to the output-stream.

• Consider the following code:

Member Meaning

BackgroundColor
ForegroundColor

These properties set background/foreground colors for current output. They
may be assigned any member of the ConsoleColor enumeration.

BufferHeight/Width These properties control the height/width of the console’s buffer area.

Clear() This method clears the buffer and console display area.

Title This property sets the title of the current console.

WindowHeight This property control dimensions of console in relation to the buffer

Give up the drop. Become the ocean.

}

public static int Main(string[] args)
{

DefaultValueTester d=new DefaultValueTester();
return 0;

}

//assigned to 0
//assigned to 0.0
//assigned to 0"
//assigned to false
//assigned to null
//assigned to <undefined value>

class DefaultValueTester

{
public int theInt;
public long theLong;
public char theChar;
public bool theBool;
public string theStr;
public object theObj;

using System;

class BasicIO
{

public static void Main(string[] args)
{

string s, a;
Console.Write("enter your name");

s=Console.ReadLine();
Console.WriteLine("hello {0}",s);
Console.Write("enter your age");
a=Console.ReadLine();
Console.WriteLine("you are {0} years old",a);

}
}

Output:

enter your name: john
hello john
enter your age:25
you are 25 years old

C# PROGRAMMING & .NET

30

FORMATTING TEXTUAL OUTPUT

• Consider the following code:

• The first parameter to WriteLine() represents a format-string that contains optional placeholders
designated by {0},{1},{2}.

• The remaining parameters to WriteLine() are the values to be inserted into the respective

placeholders.

• WriteLine() has been overloaded to allow us to specify placeholder values as an array of objects. For

example, consider the following lines of code.

• A given placeholder can be repeated within a given string. For example, consider the following line of
code.

STRING FORMATTING FLAGS
Flags Meaning

C or c Used to format currency. By default, the flag will prefix the local cultural symbol ($

for US English).

However, this can be changed using System.Globalization.NumberFormatInfo

object.

D or d Used to format decimal numbers.
This flag may also specify the minimum number of digits used to pad the value.

E or e Exponential notation.

F or f Fixed point formatting.

G or g G stands for general.
Used to format a number to fixed or exponential format.

N or n Basic numerical formatting with commas.

X or x Hexadecimal formatting.

• Consider the following code:

Our lives are nothing more than a series of moment --- if you miss the moments, you miss your life.

using System;

class BasicIO
{

public static void Main()
{

int i=77;
float f=7.62.;
string s="hello";
Console.WriteLine("Integer is: {0}\n Float is :{1}\n String is :{2}", i, f, s);

}
}

object[] stuff={"hello",20.9,"there","1986"};
Console.WriteLine("the stuff: {0},{1},{2},{3}",stuff);

Console.WriteLine("{0}number{0}number{0}",9);

//prints $99,987.99

//prints 00009.9987
//prints 9.9987E+004
//prints 100000.000
//prints 99,987.00
//prints 1869F

public static void Main(string[] args)
{

Console.WriteLine("C format:{0:C}",99987.99);
Console.WriteLine("D9 format:{0:D9}",99987);
Console.WriteLine("E format:{0:E}",99987.76543);
Console.WriteLine("F3 format:{0:F3}",99999.9999);
Console.WriteLine("N format:{0:N}",99987);
Console.WriteLine("X format:{0:X}",99987);

}

Output:

Integer is: 77
Float is :7.62
String is :hello

C# PROGRAMMING & .NET

31

UNDERSTANDING VALUE TYPES AND REFERENCE TYPES
• In .NET, data type may be value-based or reference-based.

VALUE TYPES REFERENCE TYPES

• Value-based types include all numerical data types

(int, float, char) as well as enumerations and
structures.
• These are allocated on the stack.

• These can be quickly removed from memory once

they fall out of the defining-scope.
• By default, when we assign one value type to
another, a member-by-member copy is achieved.
• Consider the following code:

• Reference types include all strings & objects.
• These are allocated on the garbage-collected heap.

• These types stay in memory until the garbage
collector destroys them.
• By default, when we assign one reference type to

another, a new reference to the same object in memory
created.

• Consider the following code:

struct Foo

{
public int x,y;

}
class ValRef

{
public static int Main(string[] args)
{
Foo f1=new Foo();
f1.x=100;
f1.y=100;
Console.WriteLine(“assigning f2 to f1”);
Foo f2=f1;

Console.WriteLine(“f1.x={0}”,f1.x);
Console.WriteLine(“f1.y={0}”,f1.y);
Console.WriteLine(“f2.y={0}”,f2.y);
Console.WriteLine(“f2.y={0}”,f2.y);
Console.WriteLine(“changing f2.x to 900”);
f2.x=900;
Console.WriteLine(“here are the X‟s again”);
Console.WriteLine(“f2.x={0}”,f2.x);
Console.WriteLine(“f1.x={0}”,f1.x);
return 0;
}

}

class Foo

{
public int x,y;

}
class ValRef

{
public static int Main(string[] args)
{
Foo f1=new Foo();
f1.x=100;
f1.y=100;
Console.WriteLine(“assigning f2 to f1”);
Foo f2=f1;

Console.WriteLine(“f1.x={0}”,f1.x);
Console.WriteLine(“f1.y={0}”,f1.y);
Console.WriteLine(“f2.y={0}”,f2.y);
Console.WriteLine(“f2.y={0}”,f2.y);
Console.WriteLine(“changing f2.x to 900”);
f2.x=900;
Console.WriteLine(“here are the X‟s again”);
Console.WriteLine(“f2.x={0}”,f2.x);
Console.WriteLine(“f1.x={0}”,f1.x);
return 0;
}

}

Output:

assigning f2 to f1
f1.x=100
f1.y=100
f2.x=100
f2.y=100
changing f2.x to 900
here are the X‟s again
f2.x=900
f1.x=100

Output:

assigning f2 to f1
f1.x=100
f1.y=100
f2.x=100
f2.y=100
changing f2.x to 900
here are the X‟s again
f2.x=900
f1.x=900

• Here, we have 2 copies of the „Foo‟ type on the stack,
each of which can be independently manipulated.
Therefore, when we change the value of f2.x, the value
of f1.x is unaffected.

• Here, we have 2 references to the same object in the
memory. Therefore, when we change the value of f2.x,
the value of f1.x is also changed.

VALUE TYPES REFERENCE TYPES

Allocated on the stack Allocated on the managed heap

Variables die when they fall out of the defining scope Variables die when the managed heap is garbage
collected

Variables are local copies Variables are pointing to the memory occupied by the
allocated instance

Variable are passed by value Variables are passed by reference

Variables must directly derive from System.ValueType Variables can derive from any other type as long as
that type is not "sealed"

Value types are always sealed and cannot be extended Reference type is not sealed, so it may function as a
base to other types.

Value types are never placed onto the heap and
therefore do not need to be finalized

Reference types finalized before garbage collection
occurs

By changing your behavior, others must necessarily change their behavior.

C# PROGRAMMING & .NET

32

VALUE TYPES CONTAINING REFERENCE TYPES

• Consider the following code:

• When a value-type contains other reference-types, assignment results in a copy of the references. In

this way, we have 2 independent structures, each of which contains a reference pointing to the same

object in memory i.e. shallow copy.

• When we want to perform a deep copy (where the state of internal references is fully copied into a

new object), we need to implement the ICloneable interface.

It's better to risk & fail than to not risk at all.

class TheRefType

{
public string x;
public TheRefType(string s)
{x=s;}

}

struct InnerRef
{

public TheRefType refType;
public int structData;
public InnerRef(string s)
{

refType=new TheRefType(s);
structData=9;

}
}

class ValRef
{

public static int Main(string[] args)
{
Console.WriteLine("making InnerRef type and setting structData to 666");
InnerRef valWithRef=new InnerRef("initial value");
valWithRef.structData=666;

Console.WriteLine("assigning valWithRef2 to valWithRef");
InnerRef valWithRef2;
valWithRef2=valWithRef;

Console.WriteLine("changing all values of valWithRef2");
valWithRef2.refType.x="I AM NEW";
valWithRef2.structData=777;

Console.WriteLine("values after change");
Console.WriteLine("valWithRef.refType.x is {0}", valWithRef.refType.x);
Console.WriteLine("valWithRef2.refType.x is {0}", valWthRef2.refType.x);
Console.WriteLine("valWithRef.structData is {0}", valWithRef.structData);
Console.WriteLine("valWithRef2.structData is {0}", valWithRef2.structData);
}

}

Output:

making InnerRef type and setting structData to 666
assigning valWithRef2 to valWithRef
changing all values of valWithRef2

values after change
valWithRef.refType.x is I AM NEW
valWithRef2.refType.x is I AM NEW
valWithRef.structData is 666
valWithRef2.structData is 777

C# PROGRAMMING & .NET

33

BOXING AND UN-BOXING

• We know that .NET defines 2 broad categories of data types viz. value-types and reference-types.

• Sometimes, we may need to convert variables of one category to the variables of other category. For

doing so, .NET provides a mechanism called boxing.
• Boxing is the process of explicitly converting a value-type into a reference-type.

• When we box a variable, a new object is allocated in the heap and the value of variable is copied into

the object.

• Unboxing is the process of converting the value held in the object reference back into a

corresponding value type.

• When we try to unbox an object, the compiler first checks whether is the receiving data type is

equivalent to the boxed type or not.
• If yes, the value stored in the object is copied into a variable in the stack.

• If we try to unbox an object to a data type other than the original type, an exception called

InvalidCastException is generated.

• For example:

• Generally, there will few situations in which we need boxing and/or unboxing.

• In most of the situations, C# compiler will automatically boxes the variables. For example, if we pass

a value type data to a function having reference type object as a parameter, then automatic boxing takes

place.

• Consider the following program:

• When we pass custom (user defined) structures/enumerations into a method taking generic

System.Obejct parameter, we need to unbox the parameter to interact with the specific members of

the structure/enumeration.

Success is nothing more than living your life according to your own truth & on your own terms

// unboxing successful
// InvalidCastException

int p=20;
object ob=p;

int b=(int)ob;
string s=(string)ob;

using System;

class Test
{

public static void MyFunc(object ob)
{

Console.WriteLine(ob.GetType());
Console.WriteLine(ob.ToString());
Console.WriteLine(((int)ob).GetTypeCode()); //explicit unboxing

}

public static void Main()
{

int x=20;
MyFunc(x); //automatic boxing

}
}

Output:

System.Int32
20
Int32

C# PROGRAMMING & .NET

34

METHOD PARAMETER MODIFIERS

• Normally methods will take parameter. While calling a method, parameters can be passed in different

ways.

• C# provides some parameter modifiers as shown:

Parameter

Modifier
Meaning

(none) If a parameter is not attached with any modifier, then parameter’s value is passed
to the method. This is the default way of passing parameter. (call-by- value)

out The output parameters are assigned by the called-method.

ref The value is initially assigned by the caller, and may be optionally reassigned by

the called-method

params This can be used to send variable number of arguments as a single parameter.

Any method can have only one params modifier and it should be the last
parameter for the method.

THE DEFAULT PARAMETER PASSING BEHAVIOR

• By default, the parameters are passed to a method by-value.

• If we do not mark an argument with a parameter-centric modifier, a copy of the data is passed into

the method.

• So, the changes made for parameters within a method will not affect the actual parameters of the

calling method.

• Consider the following program:

Our lives aren't run by good or bad luck, but by an intelligent process designed to help us evolve into our best selves.

using System;

class Test
{

public static void swap(int x, int y)
{

int temp=x;
x=y;
y=temp;

}

public static void Main()
{

int x=5,y=20;
Console.WriteLine("Before: x={0}, y={1}", x, y);
swap(x,y);
Console.WriteLine("After: x={0}, y={1}", x, y);

}
}

Output:

Before: x=5, y=20
After : x=5, y=20

C# PROGRAMMING & .NET

35

out KEYWORD

• Output parameters are assigned by the called-method.
• In some of the methods, we need to return a value to a calling-method. Instead of using return
statement, C# provides a modifier for a parameter as out.

• Consider the following program:

• Useful purpose of out: This allows the caller to obtain multiple return values from a single method-
invocation.

• Consider the following program:

The deepest personal defeat suffered by human beings is constituted by the difference between what one was capable

of becoming & what one has in fact become

using System;
class Test
{

public static void add(int x, int y, out int z)

{
z=x+y;

}

public static void Main()
{

int x=5,y=20, z;
add(x, y, out z);
Console.WriteLine("z={0}", z);

}
}

using System;

class Test
{

public static void MyFun(out int x, out string y, out bool z)
{

x=5;
y="Hello, how are you?";
z=true;

}

public static void Main()
{

int a;
string str;
bool b;

MyFun(out a, out str, out b);
Console.WriteLine("integer={0} ", a);
Console.WriteLine("string={0}", str);
Console.WriteLine("boolean={0} ", b);

}

}

Output:
z=25

Output:
integer=5,
string=Hello, how are you?
boolean=true

C# PROGRAMMING & .NET

36

ref KEYWORD

• The value is assigned by the caller but may be reassigned within the scope of the method-call.

• These are necessary when we wish to allow a method to operate on (and usually change the values

of) various data points declared in the caller’s scope.
• Differences between output and reference parameters:

→ The output parameters do not need to be initialized before sending to called-method.

Because it is assumed that the called-method will fill the value for such parameter.
→ The reference parameters must be initialized before sending to called-method.

Because, we are passing a reference to an existing type and if we don’t assign an initial value,
it would be equivalent to working on NULL pointer.

• Consider the following program:

All the dots in our lives are connected, and everything that happens to us happens for a reason.

using System;

class Test
{

public static void MyFun(ref string s)
{

s=s.ToUpper();
}

public static void Main()
{

string s="hello";
Console.WriteLine("Before:{0}",s);
MyFun(ref s);
Console.WriteLine("After:{0}",s);

}

}

Output:

Before: hello
After: HELLO

C# PROGRAMMING & .NET

37

params KEYWORD

• This can be used to send variable number of arguments as a single parameter.
• Any method can have only one params modifier and it should be the last parameter for the method

• Consider the following example:

• From the above example, we can observe that for params parameter, we can pass an array or
individual elements.
• We can use params even when the parameters to be passed are of different types.

• Consider the following program:

Without the rich heart, wealth is an ugly beggar.

using System;

class Test
{

public static void MyFun(params int[] arr)
{

for(int i=0; i<arr.Length; i++)
Console.WriteLine(arr[i]);

}

public static void Main()
{

int[] a=new int[3]{5, 10, 15};

int p=25, q=102;

MyFun(a);
MyFun(p, q);

}
}

using System;

class Test
{

public static void MyFun(params object[] arr)
{

for(int i=0; i<arr.Length; i++)
{

if(arr[i] is Int32)
Console.WriteLine("{0} is an integer", arr[i]);

else if(arr[i] is string)
Console.WriteLine("{0} is a string", arr[i]);

else if(arr[i] is bool)

Console.WriteLine("{0} is a boolean",arr[i]);
}

}

public static void Main()
{

int x=5;
string s="hello";
bool b=true;

MyFun(b, x, s);

}
}

102 25 15 10
Output:

5

Output:

True is a Boolean

5 is an integer
hello is a string

C# PROGRAMMING & .NET

38

PASSING REFERENCE TYPES BY VALUE AND REFERENCE

• Consider the following program:

• Rule1: If a reference type is passed by value, the called-method may change the values of the
object’s data but may not change the object it is referencing.

• Rule 2: If a reference type is passed by reference, the called-method may change the values of the

object’s data and also the object it is referencing.

EXERCISES

1) Explain the anatomy of a Basic C# Class. (6)
2) Explain the 3 methods of processing command line parameters. (6)
3) With example, explain objects & constructors. (6)
4) With example, explain default assignments and variable scope. (4)
5) What are basic input & output functions in Console class? Explain with example. (6)
6) Write a note on formatting textual input. (4)
7) List out & explain the string formatting flags with example. (4)
8) Explain value types and reference types with example for each. (6)
9) Compare value types vs. reference types (4)
10) With example, explain value types containing reference types. (6)
11) What is boxing and unboxing? Explain with example. (6)
12) Explain various method parameter modifiers with example for each. (8)
13) With example, explain passing reference types by value and reference. (6)

Every single person on the planet has a portion of ourselves that we hide from the world.

}

}

public void disp()

{
Console.WriteLine("{0} {1}", name, age);

}

public static void Main()
{

Person p1=new Person("Raja", 33);

p1.disp();
CallByVal(p1);
p1.disp();
CallByRef(ref p1);
p1.disp();

}

// p is now pointing to a new object on the heap

public static void CallByRef(ref Person p)

{
p.age=66;
p=new Person("John", 22);

using System;

class Person
{

string name;
int age;
public Person(string n, int a)
{

name=n;
age=a;

}

public static void CallByVal(Person p)
{

p.age=66;
p=new Person("John", 22); //this will be forgotten after the call

}

Output:

Raja 33
Raja 66
John 22

C# PROGRAMMING & .NET

39

THE MASTER NODE: SYSTEM.OBJECT

• In .NET, every data type is derived from a common base class: System.Object.
• The Object class defines a common set of members supported by every type in the .NET framework.
• When we create a class, it is implicitly derived from System.Object.

• For example, the following declaration is common way to use.
class Test class Test : System.Object
{ {
... But, internally, it means that ...
} }

• System.Object defines a set of instance-level(non-static) and class-level(static) members.
• Some of the instance-level members are declared using the virtual keyword and can therefore be

overridden by a derived-class:

Instance Method
of Object Class

Meaning

Equals() By default, this method returns true only if the items being compared

refer to the exact same item in memory.

Thus, Equals() is used to compare object references, not the state of

the object.
Typically, this method can be overridden to return true only if the

objects being compared have the same internal state values.

GetHashCode() This method returns an integer that identifies a specific object in
memory.

GetType() This method returns a System.Type object that fully describes the

details of the current item.

ToString() This method returns a string representation of a given object, using

the namespace.typename format (i.e., fully qualified name).

If the type has not been defined within a namespace, typename alone

is returned.
Typically, this method can be overridden by a subclass to return a
tokenized string of name/value pairs

Finalize() This method is invoked by the .NET runtime when an object is to be
removed from the heap (during garbage collection).

MemberwiseClone() This method is used to return a new object that is a member-by-

member copy of the current object.
Thus, if the object contains references to other objects, the references

to these types are copied (i.e., it achieves a shallow copy).

If the object contains value types, full copies of the values are
achieved (i.e., it achieves a deep copy).

No matter how beautiful your outer world looks, it's what's on the inside that's important.

// The structure of System.Object class

namespace System
{

public class Object
{

public Object();
public virtual Boolean Equals(Object obj);
public virtual Int32 GetHashCode();

public Type GetType();
public virtual String ToString();
protected virtual void Finalize();
protected Object MemberwiseClone();
public static bool Equals(object objA, object objB);
public static bool ReferenceEquals(object objA, object objB);

}
}

C# PROGRAMMING & .NET

40

THE DEFAULT BEHAVIOR OF SYSTEM.OBJECT

• Consider the following code:

• In the above program, the default implementation of ToString() simply returns the fully qualified
name of the type.

• GetType() retrieves a System.Type object, which defines a property named.

• Here, new Person object p1 is referencing memory in the heap.

• We are assigning p2 to p1. Therefore, p1 and p2 are both pointing to the same object in memory.

• Similarly the variable o (of type object) also refers to the same memory. (Thus, when we compare

p1, p2 and o, it says that all are same).

Silence is nature's sweet restorer, opening up a space in our lives to connect with our best selves ---

it's a tonic that heals us & caresses our souls.

using System;

class Person
{

public string Name, SSN;
public byte age;

public Person(string n, string s, byte a)
{

Name = n;
SSN = s;
age = a;

}

public Person(){ }

static void Main(string[] args)

{
Console.WriteLine("***** Working with Object *****\n");

Person p1 = new Person("Ram", "111-11-1111", 20);
Console.WriteLine("p1.ToString: {0}", p1.ToString());
Console.WriteLine("p1.GetHashCode: {0}", p1.GetHashCode());
Console.WriteLine("p1’s base class: {0}", p1.GetType().BaseType);

Person p2 = p1;
object o = p2;

if(o.Equals(p1) && p2.Equals(o))
Console.WriteLine("p1, p2 and o are same objects!");

}
}

Output:

***** Working with Object *****
p1.ToString: Person
p1.GetHashCode: 58225482
p1's base class: System.Object
p1, p2 and o are same objects!

C# PROGRAMMING & .NET

41

OVERRIDING SOME DEFAULT BEHAVIORS OF SYSTEM.OBJECT

• In many of the programs, we may want to override some of the behaviors of System.Object.
• Overriding is the process of redefining the behavior of an inherited virtual member in a derived class.

• We have seen that System.Object class has some virtual methods like ToString(), Equals() etc. These

can be overridden by the programmer.

OVERRIDING TOSTRING()

• Consider the following code:

• In the above example, we have overridden ToString() method to display the contents of the object in
the form of tuple.

• The System.Text.StringBuilder is class which allows access to the buffer of character data and it is a

more efficient alternative to C# string concatenation.

Train yourself to concentrate on the good in any situation.

using System;

using System.Text;
class Person
{

public string Name, SSN;
public byte age;

public Person(string n, string s, byte a)
{

Name = n;
SSN = s;
age = a;

}

public Person(){ }

// Overriding System.Object.ToString()
public override string ToString()
{

StringBuilder sb = new StringBuilder();
sb.AppendFormat("[Name={0}", this. Name);
sb.AppendFormat(" SSN={0}", this.SSN);
sb.AppendFormat(" Age={0}]", this.age);
return sb.ToString();

}

public static void Main()
{

Person p1 = new Person(“Ram”, “11-12”, 25);
Console.WriteLine(“p1 is {0}”, p1.ToString());

}
}

Output:
p1 is [Name=Ram SSN=11-12 Age=25]

C# PROGRAMMING & .NET

42

OVERRIDING EQUALS()

• By default, System.Object.Equals() returns true only if the two references being compared are

referencing same object in memory.

• But in many situations, we are more interested if the two objects have the same content. Consider

an example:

• While overriding the Equals() method, first we are checking whether the passed object is of class
Person or not.

• Also, we need to check whether the object has been allocated memory or it is having null. • Note that

Equals() method takes the parameter of type object. Thus, we need to type-cast it to Person type before

using it.

• When we override Equals(), we need to override GetHashCode() too.

Have big-time fun as you chase & catch your most cherished dreams.

}

}
Console.WriteLine("p4 and p2 are not same");

else
Console.WriteLine("p4 and p2 are same");

//compares based on content, not on reference if(p2.Equals(p4))

using System;

class Person
{

public string Name, SSN;
public byte age;

public Person(string n, string s, byte a)
{

Name = n;
SSN = s;
age = a;

}

public Person(){ }

public override bool Equals(object ob)

{
if (ob != null && ob is Person)
{

Person p = (Person)ob;

if (p.Name == this.Name && p.SSN == this.SSN && p.age == this.age)
return true;

}
return false;

}

public static void Main()

{
Person p1 = new Person("Ram", "11-12", 25);
Person p2 = new Person("John", "11-10", 20);
Person p3 = new Person("Ram", "11-12", 25);
Person p4 = p2;
if(p1.Equals(p2))

Console.WriteLine("p1 and p2 are same");
else

Console.WriteLine("p1 and p2 are not same");

if(p1.Equals(p3))
Console.WriteLine("p1 and p3 are same");

else
Console.WriteLine("p1 and p3 are not same");

Output:

p1 and p2 are not same
p1 and p3 are same
p4 and p2 are same

C# PROGRAMMING & .NET

43

OVERRIDING SYSTEM.OBJECT.GETHASHCODE()

• The GetHashCode() method returns a numerical value used to identify an object in the memory.

• The default implementation of the GetHashCode() method does not guarantee unique return values

for different objects. (Thus, if we have two Person objects that have an identical name, SSN, and age,

obtain the same hash code).

• When a class overrides the Equals() method, best practices dictate that we should also override

System.Object.GetHashCode(). If we fail to do so, we are issued a compiler warning.

• Consider the following code:

A powerful dream gives you hope. Focus will flood your days because you'll know exactly what you've been placed on the

planet to do.

using System;

class Person
{

public string Name, SSN;
public byte age;

public Person(string n, string s, byte a)
{

Name = n;
SSN = s;
age = a;

}

public Person(){ }

public override int GetHashCode()
{

return SSN.GetHashCode();
}

public static void Main()
{

Person p1 = new Person("Ram", "11-12", 25);
Person p2 = new Person("John", "11-10", 20);
Person p3 = new Person("Ram", "11-12", 25);
Person p4 = p2;

if(p1.Equals(p3)) //comparison based on reference

Console.WriteLine("p1 and p3 are same");
else

Console.WriteLine("p1 and p3 are not same");

if(p1.GetHashCode()==p3.GetHashCode()) //comparison based on SSN
Console.WriteLine("p1 and p3 are same");

else
Console.WriteLine("p1 and p3 are not same");

}
}

Output:

p1 and p3 are not same
p1 and p3 are same

C# PROGRAMMING & .NET

44

ITERATION CONSTRUCTS

• Similar to any other programming language, C# provides following iteration constructs:
FOR LOOP
• This loop will allow to repeat a set of statements for fixed number of times.

• We can use any type of complex terminating conditions, incrementation/decrementation, continue,

break, goto etc. while using for loop.
FOREACH/IN LOOP
• This loop is used to iterate over all items within an array, without the need to test for the array’s

upper limit. For example:

• Apart from iterating over simple arrays, foreach loop can be used to iterate over system supplied or
user-defined collections.

WHILE AND DO/WHILE LOOP
• When we don’t know the exact number of times a set of statements to be executed, we will go for

while loop. That is, a set of statements will be executed till a condition remains true. For example:

• Some times, we need a set of statements to be executed at least once, irrespective of the condition.
Then we can go for do/while loop. For example:

A life well lived is all about reaching for your highest & your best.

}

}

string[] pets = { "dog", "cat", "bird" };

// ...now loop with the foreach keyword.
foreach (string value in pets)
{

Console.WriteLine(value);
}

//0 to 3 will be printed.

using System;
class Program
{

static void Main()

{
// ... loop with the for keyword.
for(int i=0; i<4;i++)

Console.WriteLine(“{0} ”, i);

class Program

{
static void Main()
{

// Continue in while-loop until index is equal to 3.
int i = 0;
while (i < 2)
{

Console.Write("C# Language ");
// Write the index to the screen.

Console.WriteLine(i);
// Increment the variable.

i++;
}

}
}

string opt;

do
{

Console.Write(“Do you want to continue?(Yes/No): ”);
opt=Console.ReadLine();

}while(opt!=”Yes”);

Output:

0 1 2 3
dog
cat
bird

Output

C# Language 0
C# Language 1

C# PROGRAMMING & .NET

45

CONTROL FLOW CONSTRUCTS

• There are two control flow constructs in C# viz. if/else and switch/case.

• if/else works only on boolean expressions. So, we cannot use the values 0, 1 etc. within if as we do

in C/C++.
• Switch/case allows us to handle program flow based on a predefined set of choices.
• A condition for a value "not equal to zero" will not work in C#.

• The following two tables list out the relational and logical operators respectively.
Relational Operator Meaning

== To check equality of two operands

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Logical Operator Meaning

&& Logical AND

|| Logical OR

! Logical NOT

• For example:

COMPLETE SET OF OPERATORS

• Following is a set of operators provided by C#.
Operator Category Operators

Unary +, -, !, ~, ++, --

Multiplicative *, /, %

Additive +, -

Shift <<, >>

Relational <, >, <=. >=, is, as

Equality ==, !=

Logical & (AND), ^ (XOR), | (OR)

Conditional &&, ||, ?: (ternary operator)

Indirection/Address *, ->, &

Assignment =, *=, -=, +=, /=, %=, <<=, >>=, &=, ^=,

• "is" operator is used to verify at runtime if an object is compatible with a given type. One common

use is: to determine if a given object supports a particular interface.
• "as" keyword is used to downcast between types or implemented interface.

• As C# supports inter-language interaction, it supports the C++ pointer manipulation operators like *,

-> and &. But if we use any of these operators, we are going bypass the runtime memory

management scheme and writing code in unsafe mode.

Forgiveness is the fragrance the violet sheds on the heel that crushed it.

class Selections

{

public static int Main(string[] args)
{

Console.WriteLine("1 C#\n 2 Managed C++\n 3 VB.NET");

Console.WriteLine("please enter your implementation language");
int n=Console.ReadLine();

switch(n)
{

case 1: Console.WriteLine("good choice C# is all about managed code");
break;

case 2: Console.WriteLine("let me guess, maintaining a legacy system?");

break;
case 3: Console.WriteLine("VB.NET It is not just for kids anymore");

break;

default: Console.WriteLine("well good luck with that");
break;

}
return 0;

}

}

C# PROGRAMMING & .NET

46

THE SYSTEM DATA TYPES (AND C# ALIASES)

• Every intrinsic data type is an alias to an existing type defined in the System namespace (Fig. 3.13).

• Specifically, each C# data type aliases a well-defined structure type in the System namespace.
• Following table lists each system data type, its range, the corresponding C# alias and the type’s

compliance with the CLS.
C#

Alias
CLS

Compliant?
System Type Range Meaning

sbyte No System.SByte -128 to 127 Signed 8-bit number

byte Yes System.Byte 0 to 255 Unsigned 8-bit number

short Yes System.Int16 -216 to 216-1 Signed 16-bit number

ushort No System.UInt16 0 to 232-1 Unsigned 16-bit number

int Yes System.Int32 -232 to 232-1 Signed 32-bit number

uint No System.UInt32 0 to 264-1 Unsigned 32-bit number

long Yes System.Int64 -264 to 264-1 Signed 64-bit number

char Yes System.Char U10000 to U1ffff A Single 16-bit Unicode character

float Yes System.Single 1.5 x 10-45 to
3.4 x 1038

32-bit floating point number

bool Yes System.Boolean True or False Represents truth or falsity

decimal Yes System.Decimal 1 to 1028 96-bit signed number

string Yes System.String Limited by system
memory

Represents a set of Unicode
characters

object Yes System.Object Anything derive from
object

The base class of all types in the
.NET universe.

• From this table, we can see that all the types are ultimately derived from System.Object.

• Since the data types like int are simply shorthand notations for the corresponding system type (like

System.Int32), the following statements are valid –

Console.WriteLine(25.GetHashCode());

Console.WriteLine(32.GetType().BaseType()); etc.

• We can see that, though C# defines a number of data types, only a subset of the whole set of data

types are compliant with the rules of CLS.

• So, while building user-defined types (like class, structures), we should use only CLS-compliant

types.
• And also, we should avoid using unsigned types as public member of user-defined type.

• By doing this, the user-defined type (class, enumeration, structure etc) can be understood by any

language in .NET framework.

An extraordinary life contains both success & significance. The essence of life is balance.

C# PROGRAMMING & .NET

47

EXPERIMENTING WITH THE SYSTEM DATA TYPES

• The only purpose of System.ValueType is to override the virtual methods defined by System.Object

to work with value-based versus reference-based semantics.

BASIC NUMERICAL MEMBERS
• The numerical types support MaxValue and MinValue properties that provide information regarding

the minimum and maximum value a given type can hold.

• For example:
using System;
class Test
{

public static void Main()

{
System.UInt16 a=30000;

Console.WriteLine("Max value for UInt16: {0}", UInt16.MaxValue); //65535
Console.WriteLine("Min value for UInt16: {0}", UInt16.MinValue); //0
Console.WriteLine("value of UInt16: {0}", a); //30000

Console.WriteLine("The type is: {0}", a.GetType().ToString()); //System.UInt16

ushort b=12000;

Console.WriteLine("Max value for ushort: {0}", ushort.MaxValue); //65535
Console.WriteLine("Min value for ushort: {0}", ushort.MinValue); //0
Console.WriteLine("value of ushort: {0}", b); //12000

Console.WriteLine("The type is: {0}", b.GetType().ToString()); //System.UInt16

}
}

MEMBERS OF SYSTEM.BOOLEAN
• The only valid assignment a bool can take is from the set {true | false}.

• We cannot assign make-shift values (e.g. 1 0 -1) to a bool.

• System.Boolean does not support a MinValue/MaxValue property-set but rather

TrueString/FalseString.
MEMBERS OF SYSTEM.CHAR

• All the .NET-aware languages map textual data into the same underlying types viz System.String and

System.Char, both are Unicode.
• The System.Char type provides several methods as shown in the following example:

Do good things for yourself & others in your life, and good things are certain to flow back to you.

public abstract class ValueType: object

{
public virtual bool Equals(object obj);
public virtual int GetHashCode();
public Type GetType();
public virtual string ToString();

}

using System;

class Test
{

public static void Main()
{

bool b1=true;
bool b2=false;
Console.WriteLine("{0}", bool.FalseString); //False
Console.WriteLine("{0}", bool.TrueString); //True
Console.WriteLine("{0}, {1}", b1, b2); //True, False
Console.WriteLine("{0}", char.IsDigit('P')); //False
Console.WriteLine("{0}", char.IsDigit('9')); //True
Console.WriteLine("{0}", char.IsLetter("10", 1)); //False
Console.WriteLine("{0}", char.IsLetter("1a", 1)); //True
Console.WriteLine("{0}", char.IsLetter('p')); //True
Console.WriteLine("{0}", char.IsWhiteSpace("Hello World", 5)); //True
Console.WriteLine("{0}", char.IsWhiteSpace("Hello World", 6)); //False
Console.WriteLine("{0}", char.IsLetterOrDigit('?')); //False
Console.WriteLine("{0}", char.IsPunctuation('!')); //True

Console.WriteLine("{0}", char.IsPunctuation(',')); //True
}

}

C# PROGRAMMING & .NET

48

DEFINING PROGRAM CONSTANTS

• "const" keyword is used to define variables with a fixed, unaltered value.
• Unlike C++, "const" keyword cannot be used to qualify parameters or return values.

• The value of a constant point of data is computed at compile-time and therefore a constant-member

cannot be assigned to an object-reference.
• It is possible to define local constants within a method scope.

• If we create a utility class that contains nothing but constant data, we may wish to define a private
constructor. In this way, we ensure the object user cannot make an instance of the class.

• Private constructors prevent the creation of a given type.

• Consider the following code:

DEFINING CUSTOM CLASS METHODS

• A method exists to allow the type to perform a unit of work

• In C#, every data and a method must be a member of a class or structure. That is, we cannot have

global data or method.
• The methods may or may not take parameters and they may or may not return a value.

• Also, custom methods (user defined methods) may be declared non-static (instance level) or static

(class level).

METHOD ACCESS MODIFIERS

• Every method specifies its level of accessibility using following access modifiers:
Access Modifiers Meaning

public Method is accessible from an object or any subclass.

private Method is accessible only by the class in which it is defined. private
is a default modifier in C#.

protected Method is accessible by the defining class and all its sub-classes.

internal Method is publicly accessible by all types in an assembly, but not

outside the assembly.

protected internal Method’s access is limited to the current assembly or types derived
from the defining class in the current assembly.

• Methods that are declared public are directly accessible from an object instance via the dot operator.
• Private methods cannot be accessed by an object reference but instead are called internally by the

object to help the instance get its work done (i.e. private helper functions).

When you make better choices, you are certain to experience better results.

using System;

class MyConstants
{

public const int myIntConst=5;
public const string myStringConst="i am a constant";
private MyConstants() { }
public static void Main()
{

const string localConst="i am a rock,i am an island";
Console.WriteLine("my integer constant={0}",myIntConst);
Console.WriteLine("my string constant={0}",myStringConst);
Console.WriteLine("local constant={0}",localConst);

}

}

Output:
my integer constant=5
my string constant= i am a constant
local constant= i am a rock,i am an island

C# PROGRAMMING & .NET

49

UNDERSTANDING STATIC METHODS

• A method can be declared as static. When a method is static, it can be invoked directly from the

class-level, without creating an object.
• This is the reason for making Main() function to be static.

• The another example is WriteLine() method. We will directly use the statement Console.WriteLine()

without creating an object of Console class. For example:

DEFINING STATIC DATA
• Static data is shared among all object instances of the same type. Rather than each object holding a

copy of a given field, a point of static data is allocated exactly once for all instances of the type.

• If one object changes the value, all types 'see' the change.

• Main use: to allow all objects to share a given value at the class level. For example:

Nothing fails like success.

using System;

class Test
{

public static void disp()
{

Console.WriteLine(“hello”);
}

public static void Main()
{

Test.disp(); //calling method using class name itself
}

}

}
}

//1

//2
//3

using System;

class Test
{

public static int p=0;

public int incr()
{

return ++p;
}

public static void Main()
{

Test t1=new Test();
Test t2=new Test();

Console.WriteLine("p= {0}", t1.incr());
Console.WriteLine("p= {0}", t2.incr());
Console.WriteLine("p= {0}", t1.incr());

C# PROGRAMMING & .NET

50

ARRAY MANIPULATION IN C#

• C# arrays look like that of C/C++. But, basically, they are derived from the base class viz.
System.Array.
• Array is a collection of data elements of same type, which are accessed using numerical index.

• Normally, in C#, the array index starts with 0. But it is possible to have an array with arbitrary lower

bound using the static method CreateInstance() of System.Array.

• Arrays can be single or multi-dimensional. The declaration of array would look like –

• In .NET, the members of array are automatically set to their respective default value. For example, in
the statement,

int[] a= new int[10];

all the elements of a are set to 0. Similarly, string array elements are set to null and so on.

ARRAY AS PARAMETERS AND RETURN VALUES

• Array can be passed as parameter to a method and also can be returned from a method.

• Consider the following program:

Fail faster. Succeed sooner.

int[] a= new int[10];

a[0]= 5;
a[1]= 14;
……….
string[] s= new string[2]{“raja”, “john”};
int[] b={15, 25, 31, 78}; //new is missing. Still valid

}

string[] str={"Hello", "World"};
return str;

}

public static void Main()
{

int[] p=new int[]{20, 54, 12, -56};
disp(p);

string[] strs=MyFun();
foreach(string s in strs)

Console.WriteLine(s);
}

//returning an array public static string[] MyFun()
{

using System;
class Test
{

public static void disp(int[] arr) //taking array as parameter

{
for(int i=0;i<arr.Length;i++)

Console.WriteLine("{0} ", arr[i]);
}

Hello World -56 12 54 20
Output:

C# PROGRAMMING & .NET

51

WORKING WITH MULTIDIMENSIONAL ARRAYS

• There are two types of multi-dimensional arrays in C# viz. rectangular array and jagged array.
• The rectangular array is an array of multiple dimensions and each row is of same length.

• Consider the following program:
using System;

class Test
{

static void Main(string[]
{

// A rectangular MD array.
int[,] myMatrix;
myMatrix = new int[6,6];

// Populate (6 * 6) array.

for(int i = 0; i < 6; i++)
for(int j = 0; j < 6; j++)

myMatrix[i, j] = i * j;

// Print (6 * 6) array.
for(int i = 0; i < 6; i++)
{

for(int j = 0; j < 6; j++)
Console.Write(myMatrix[i, j] + "\t");

Console.WriteLine();
}

}

}

Output:
0

0

0

0

0

0

 0 1 2 3 4 5
 0 2 4 6 8 10
 0 3 6 9 12 15
 0 4 8 12 16 20
 0 5 10 15 20 25

• A jagged array is an array whose elements are arrays.

The elements of array can be of different dimensions and sizes.

A jagged array is sometimes called an "array of arrays."
• Consider the following program:

Goals breathe life & energy into your days. Most people don't get up early because they have no reason to.

class ArrayTest
{

static void Main()
{

// Declare the array of two elements:
int[][] arr = new int[2][];

// Initialize the elements:
arr[0] = new int[5] { 1, 3, 5, 7, 9 };
arr[1] = new int[4] { 2, 4, 6, 8 };

// Display the array elements:
for (int i = 0; i < arr.Length; i++)
{

Console.Write("Element({0}): ", i);

for (int j = 0; j < arr[i].Length; j++)
{

Console.Write("{0} ", arr[i][j]);
}
Console.WriteLine();

}
}

}

Output:

Element(0): 1 3 5 7 9
Element(1): 2 4 6 8

C# PROGRAMMING & .NET

52

SYSTEM.ARRAY BASE CLASS

• Every array in C# is derived from the class System.Array.
Member Meaning

BinarySearch() This method searches a (previously sorted) array for a given item.

If the array is composed of user-defined data types, the type in question

must implement the IComparer interface to engage in a binary search.

Clear() This method sets a range of elements in the array to empty values (0 for

value types; null for reference types).

CopyTo() This method is used
destination array.

to copy elements from the source array into the

Length This property is used to determine the number of elements in an array.

Rank This property returns the number of dimensions of the current array.

Reverse() This method reverses the contents of a one-dimensional array.

Sort() This method sorts a one-dimensional array of intrinsic types.

If the elements in the array implement the IComparer interface, we can

also sort an array of user-defined data type .

• Consider the following example to illustrate some methods and/or properties of System.Array class

A mistake is only a mistake if you make it twice.

using System;
class Test
{

public static void Main()

{
int[] arr=new int[5]{12, 0, 45, 32, 67};

Console.WriteLine("Array elements are :");

for(int i=0;i<arr.Length;i++)

Console.WriteLine("{0}\t", arr[i]);

Array.Reverse(arr);

Console.WriteLine("Reversed Array elements are :");
for(int i=0;i<arr.Length;i++)

Console.WriteLine("{0}\t", arr[i]);

Array.Clear(arr, 1, 3);

Console.WriteLine("Cleared some elements :");
for(int i=0;i<arr.Length;i++)

Console.WriteLine("{0}\t", arr[i]);
}

}

Reversed Array elements are:
67 32 45 0 12
Cleared some elements:
67 0 0 0 12

67 32
Array elements are:
12 0 45

Output:

C# PROGRAMMING & .NET

53

STRING MANIPULATION IN C#

• Data type string is an alias type for System.String class.

• This class provides a set of methods to work on strings. Following is a list of few such methods:
Member Meaning

Length This returns the length of the current string.

Contains() This is used to determine if the current string object contains a specified
string.

Concat() This method returns a new string that is composed of two discrete

strings.
CompareTo() Compares two strings.

Copy() Returns a fresh new copy of an existing string.

Format() This is used to format a string literal using other primitives (i.e.,
numerical data and other strings)

Insert() This method is used to receive a copy of the current string that contains
newly inserted string data.

PadLeft()

PadRight()

These return copies of the current string that has been padded with

specific data.

Remove()
Replace()

Use these methods to receive a copy of a string, with modifications
(characters removed or replaced).

Substring() This returns a string that represents a substring of the current string.

ToCharArray() This returns a character array representing the current string.

ToUpper()
ToLower()

These create a copy of a given string in uppercase or lowercase.

• Consider the following example:

The secret of passion is purpose. Once you find your calling, your heart will begin to sing, and you'll have more passion,

power and inner peace than you ever could have imagined.

using System;

class Test
{

public static void Main()
{

System.String s1="This is a string";
string s2="This is another string";

if(s1==s2)

Console.WriteLine("Same strings");
else

Console.WriteLine("Different strings");

string s3=s1+s2;

Console.WriteLine("s3={0}",s3);

for(int i=0;i<s1.Length;i++)

Console.WriteLine("Char {0} is {1}\n",i, s1[i]);

Console.WriteLine("Contains 'is'?: {0}", s1.Contains("is"));

Console.WriteLine(s1.Replace('a',' '));
}

}

Char 3 is s
Char 7 is
Char 11 is t
Char 15 is g

Char 2 is i
Char 6 is s
Char 10 is s
Char 14 is n

Char 1 is h
Char 5 is I
Char 9 is
Char 13 is I

Char 0 is T
Char 4 is
Char 8 is a
Char 12 is r
Contains 'is'?: True
This is string

Different strings
s3=This is a stringThis is another string

Output:

C# PROGRAMMING & .NET

54

ESCAPE CHARACTERS AND “VERBATIM STRINGS”

• Just like C, C++ and Java, C# also provides some set of escape characters as shown:
Character Meaning

\’ Inserts a single quote into a string literal.

\" Inserts a double quote into a string literal.

\\ Inserts a backslash into a string literal.

\a Triggers a system alert (beep).

\n Inserts a new line (on Win32 platforms).

\r Inserts a carriage return.

\t Inserts a horizontal tab into the string literal

\v Inserts a vertical tab into the string literal

\0 Represents NULL character.

• In addition to escape characters, C# provides the @-quoted string literal notation named as

verbatim string. Using this, we can bypass the use of escape characters and define the literals.

• Consider the following program:

USING SYSTEM.TEXT.STRINGBUILDER

• The value of a string cannot be modified once established. i.e. strings are immutable.

• The methods like Replace() may seems to change the content of the string, but actually, those

methods just output a copy of the string and the original string remains the same. For example:

• Thus, whenever we want to modify a string, we should have a new string to store the modified
version. That is, every time we have to work on a copy of the string, but not the original.

• To avoid this in-efficiency,C# provides class called StringBuilder present in namespace System.Text.

• Any modification on an instance of StringBuilder will affect the underlying buffer itself.

• Consider the following program:

One of our biggest regrets on our deathbeds is that we were not reflective enough.

class Test
{

public static void Main()
{

string s1="I said, \"Hi\"";
Console.WriteLine("{0}",s1);
s1="C:\\Notes\\DotNet\\Chapter3.doc";
Console.WriteLine("{0}",s1);
string s2=@"C:\Notes\DotNet\Chapter3.doc";
Console.WriteLine("{0}",s2);

}
}

//HELLO
//hello

//hello
string s1=”hello”;
Console.WriteLine(“s1={0}”, s1);
string s2=s1.ToUpper();
Console.WriteLine(“s2={0}”, s2);
Console.WriteLine(“s1={0}”, s1);

using System.Text;

class Test
{

public static void Main()
{

StringBuilder s1= new StringBuilder("hello");
s1.Append(" world");
Console.WriteLine("{0}",s1);
string s2=s1.ToString().ToUpper();

Console.WriteLine("{0}",s2);
}

}

Output:

I said, "Hi"
C:\Notes\DotNet\Chapter3.doc
C:\Notes\DotNet\Chapter3.doc

Output:

hello world
HELLO WORLD

C# PROGRAMMING & .NET

55

enum M_Status
{

}

enum M_Status
{

}

ENUMERATIONS

• When number of values taken by a type is limited, it is better to go for symbolic names rather than

numeric values.

• For example, the marital status of a person can be any one of Married, Widowed, Unmarried,

Divorced. To have such symbolic names, C# provides enumerations –

Married, //0
Widowed, //1
Unmarried, //2
Divorced //3

• In enumeration, the value for first symbolic name is automatically initialized to 0 and second to 1 etc.

If we want to give any specific value, we can use –

Married =125,

Widowed, //126
Unmarried, //127
Divorced //128

or

• By default, the storage type used for each item of enumeration is System.Int32. We can change it, if
we wish –

• Enumerations can be used as shown below –

The only way to have a life is to commit to it like crazy.

enum M_Status

{
Married =125,
Widowed=0,
Unmarried=23,
Divorced=12

}

enum M_Status: byte

{
Married =125,
Widowed=0,
Unmarried=23,
Divorced=12

}

}
}

if(p2==M_Status.Divorced)
Console.WriteLine("p2 is {0}", M_Status.Divorced); //p2 is Divorced

// p1 is married

using System;

class Test
{

enum M_Status: byte
{

Married =125,
Widowed=0,
Unmarried=23,
Divorced=12

}

public static void Main()
{

M_Status p1, p2;

p1=M_Status.Married;
p2=M_Status.Divorced;

if(p1==M_Status.Married)
Console.WriteLine("p1 is married");

C# PROGRAMMING & .NET

56

SYSTEM.ENUM BASE CLASS

• The C# enumerations are derived from System.Enum class.
Member Meaning

Format() Converts a value of a specified enumerated type to its

equivalent string representation according to specified format

GetName()
GetNames()

Retrieves a name (or an array containing all names) for the
constant in specified enumeration that has the specified value

GetUnderlyingType() Returns the underlying data type used to hold the values for a
given enumeration

GetValues() Retrieves an array of the values of the constants in a specified
enumeration

IsDefined() Returns an indication of whether a constant with a specified

value exists in a specified enumeration

Parse() Converts the string representation of the name or numeric

value of one or more enumerated constants to an equivalent
enumerated object

• Consider the following example to illustrate some of the methods of Enum class.

It’s human nature not to appreciate all we have until it's lost.

using System;

class Test
{

enum M_Status
{

Married ,
Widowed,
Unmarried,
Divorced

}

public static void Main()
{

Console.WriteLine(Enum.GetUnderlyingType(typeof(M_Status)));

Array obj =Enum.GetValues(typeof(M_Status));

Console.WriteLine("This enum has {0} members", obj.Length);
foreach(M_Status p in obj)
{

Console.WriteLine("String name: {0}", p.ToString());
Console.WriteLine("int: ({0}),", Enum.Format(typeof(M_Status), p, "D"));
Console.WriteLine("hex: ({0}),", Enum.Format(typeof(M_Status), p, "X"));

}

if(Enum.IsDefined(typeof(M_Status), "Widowed"))
Console.WriteLine("Widowed is defined");

M_Status p1 = (M_Status)Enum.Parse(typeof(M_Status), "Divorced");
Console.WriteLine("p1 is {0}", p2.ToString());

M_Status p2=M_Status.Married;
if(p1<p2)

Console.WriteLine(“p1 has less value than p2”);
else

Console.WriteLine(“p1 has more value than p2”);
}

}

int: (0) hex: (00000000)
int: (1) hex: (00000001)
int: (2) hex: (00000002)
int: (3) hex: (00000003)

System.Int32
This enum has 4 members
String name: Married
String name: Widowed
String name: Unmarried
String name: Divorced
Widowed is defined
p1 is Divorced
p1 has more value than p2

Output:

C# PROGRAMMING & .NET

57

DEFINING STRUCTURES

• Structures behave similar to class, except that structure-memory will be allocated in stack-area,

whereas for class-memory will be allocated from heap-area.

• This can have member-data, member-methods, constructors (only parameterized) and they can

implement interfaces.
• This is directly derived from System.ValueType.

• We can implement boxing and unboxing on structures just like as we do for any intrinsic data types.

• Consider the following program:

Small choices lead to giant consequences-- over time. There's no such thing as an unimportant day.

}

}

public static void MyFun(object obj)
{

EMP t=(EMP)obj; //unboxing

Console.WriteLine("After boxing and un-boxing:");
t.disp();

}

//boxing object ob=e;
MyFun(ob);

using System;
struct EMP
{

public int age;
public string name;

public EMP(int a, string n)
{

age=a;
name=n;

}

public void disp()
{

Console.WriteLine("Name ={0}, Age ={1}", name, age);
}

}

class Test
{

public static void Main()
{

EMP e=new EMP(25, "Raja");
e.disp();

Output:

Name =Raja, Age =25
After boxing and un-boxing:
Name =Raja, Age =25

C# PROGRAMMING & .NET

58

DEFINING CUSTOM NAMESPACES

• We can define our own namespace i.e. user-defined namespace (or custom namespace).
• Whenever we want to group similar classes into a single entity, we can define a namespace.

• Assume we need to develop a program to show the features of several vehicles like car, bus and

bike. Then, the classes for all these vehicles can be put under a namespace as shown in below code:

• Now, the namespace Vehicle acts as a container for all these classes. If we want to create an object

of any of these classes in any other application, we can simply write –

RESOLVING NAME CLASHES ACROSS NAMESPACES

• There may be situation where more than one namespace contains the class with same name. For

example, we may have one more namespace like –

• When we include the namespaces MyVehicle and Vehicle, and try to create an object of Car class, we
will get an error.

• To avoid this, we will use dot operator for combining namespace name & class name. For example:

Reading is one of the best disciplines to stay on your game & at your highest.

namespace Vehicle
{

public class Car
{

//members of Car class
}

public class Bus
{

//members of Bus class
}

public class Bike
{

//members of Bike class
}

}

using System;

using Vehicle; //note this
class Test
{

public static void Main()
{

Car c=new Car();

}
}

namespace MyVehicle

{
public class Car
{

//members of Car class
}

}

using System;
using Vehicle;
using MyVehicle;
class Test
{

public static void Main()
{

Car c=new Car(); //Error!!! name conflict
Vehicle.Car c1=new Vehicle.Car();
MyVehicle.Car c2=new MyVehicle.Car();

}
}

C# PROGRAMMING & .NET

59

DEFINING NAMESPACE ALIASES

• The ambiguity in the namespaces can also be resolved using alias names as shown –

NESTED NAMESPACES

• We can nest one namespace within the other also. For example –

EXERCISES

1) What is System.Object? Explain the instance methods of Object Class. (6)

2) Explain the default behavior of System.Object with example. (6)
3) How do you override ToString()of System.Object? Explain with example. (6)
4) How do you override Equals()of System.Object? Explain with example. (6)
5) Explain 4 iteration constructs with example for each. (8)
6) Explain 2 control flow constructs with example. (6)
7) Draw a diagram to depict the hierarchy of System types and explain. (6)
8) List out & explain various method access modifiers. (4)
9) Explain the static method and static data with example for each. (6)
10) Explain 2 types of multi-dimensional arrays with example for each. (8)
11) List out & explain core members of System.Array class. (4)
12) List out & explain core members of System.String class. (4)
13) Explain the features of StringBuilder class with example. (6)
14) Explain escape characters and “verbatim strings” with example. (4)
15) List out & explain core members of System.Enum class. (4)
16) Explain (un)boxing custom structures with example. (4)

17) Explain the following with reference to namespace: (8)
i) Defining custom namespaces
ii) Resolving name clashes across namespaces
iii) Defining namespace aliases

Life helps those who help themselves.

using System;

using Vehicle;
using MyVehicle;
using MyCar=MyVehicle.Car;
class Test
{

public static void Main()
{

Car c1=new Car();
MyCar c2=new MyCar();

}
}

namespace Vehicle

{
namespace MyVehicle
{

}
}

Or
namespace Vehicle.MyVehicle
{

}

C# PROGRAMMING & .NET

60

FORMAL DEFINITION OF C# CLASS
• Class is a basis of OOPs.

• A class can be defined as a user-defined data type (UDT) that is composed of data (or attributes) and

functions (or methods) that act on this data.
• In OOPs, we can group data and functionality into a single UDT to model a real-world entity.
• A C# class can define any number of constructors.

Constructor is a special type of method called automatically when object gets created.

They are used to provide initial values for some attributes.
• The programmer can define default constructor to initialize all the objects with some common state.

• Custom or parameterized constructors can be used to provide different states to the objects when

they get created.

• The general form of a C# class may look like:
class class_name

{

//data members

//constructors
//methods

}

METHOD OVERLOADING

• The method is said to be overloaded if a class has a set of identically named-members that differ by

the number/type/order of parameters.

Eg:

• Just like constructor, other methods of class can be overloaded.
Eg:

• When overloading a method, it is not enough that return-type alone is unique.

Eg:

Discovering a powerful dream that you can live your life by, will give you immense power, drive and energy.

class Employee

{
public Employee() {. . .}
public Employee(string fullName, int empID)
{. . .}

}

class Triangle

{
public void Draw(int x, int y, int h, int w);
public void Draw(float x, float y, float h, float w);
public void Draw(Point upperLeft, Point bottomRight);

}

// generate
//compile error

class Triangle

{
public float GetX();
public int GetX();

}

C# PROGRAMMING & .NET

61

SELF REFERENCE IN C# USING this

• Consider the custom-constructor of the "Employee" class that makes use of "this" keyword.
• "this" keyword is used to make reference to the current object.
• Another reason to use "this" keyword is to avoid clashes between

→ parameter names and

→ names of internal state variables

Forwarding Constructor Calls Using "this" Keyword

• Another use of "this" keyword is to force one constructor to call another constructor during the time

of construction. This is one of the ways to avoid redundant member initialization logic.
Eg:

• The second custom constructor requires a single parameter. However, to full construct a new

"Employee", we want to ensure we have a proper EmployeeID.

• Assume we have a custom class (IDGenerator) that defines a static method named GetNewEmpID() to

generate a new ID for a given employee. Once we gather the correct set of start up parameters, we

forward the creation request to the alternate 2 argument-constructor.

You can't hit a target you can't even see.

class Employee

{
public Employee(string fullName, int empID)
{

//assign incoming parameters to my state data
this.fullName=fullName;
this.empID=empID;

}
}

// if the user calls this constructor, forward to the 2 argument version
public Employee(string fullName):this(fullName,IDGenerator.GetNewEmpID())
{
. . .
}

public Employee(string fullName

{
this.fullName=fullName;
this.empID=IDGenerator.GetNewEmpID;

}

C# PROGRAMMING & .NET

62

DEFINING THE "DEFAULT PUBLIC INTERFACE" OF A TYPE

• This refers to the set of public members that are directly accessible from an object variable.
• This may also be configured to support custom events and delegates.
• The default interface of a class may be populated by any of the following members:

→ methods: named units of work that model some behaviour of a class

→ properties: accessor and mutator functions

→ public field data

SPECIFYING TYPE VISIBILITY: PUBLIC AND INTERNAL TYPES

• Method visibility is used to constrain which members can be accessed from a given object. • Type

visibility is used to establish which parts of the system can create the types themselves.
• A non-nested type can be marked by one of two visibility keywords: public or internal.

• Public types may be created by any other objects within the same assembly as well as by other

external assemblies.

• Internal classes can only be used by other types within the same assembly.
• A type is simply a generic term used to refer to classes, structures, enumerations and interfaces.

• Consider the following code:

RECAPPING THE PILLARS OF OOP

• Encapsulation service deals with the language's ability to hide unnecessary implementation details

from the object user.

• Inheritance deals with the language's ability to allow us to build new class definitions based on

existing class definitions.
• Polymorphism deals with the language's ability to treat related objects the same way.

You can't win a game that you don't even play.

namespace HelloTypes

{
internal struct x
{

//cannot be used outside this assembly
private int myX;
public int GetMyX() {return myX;}
public X(int x) {myX=x; }

}

//may be used outside this assembly
public class HelloClass
{

public static int Main(string[] args)
{

X theX=new X(26);
Console.WriteLine("{0}", theX.GetMyX());
return 0;

}
}

}

C# PROGRAMMING & .NET

63

INHERITANCE: THE "is-a" AND "has-a" RELATIONSHIP

• Inheritance allows to extend the behavior of a base-class by inheriting core-functionality into a

subclass.

• System.Object is the topmost-node in any .NET hierarchy. Here, the "shape" class extends "Object".

"Shape" defines some number of properties, fields, methods and events that are common to all shapes

(Figure 4-3).

• The "Hexagon" class extends "Shape" and inherits the core-functionality defined by "Shape" and

"Object." "Hexagon" also defines additional hexagon-related details of its own.

• We can read this diagram is "A hexagon is- shape that is an object". When we have classes-related by

this form of inheritance, we establish "is-a" relationships between types.

• "has-a" relationship is a form of reuse but is not used to establish base/subclass relationships. Rather,

a given class (e.g. Car) can define a member-variable of another class(eg Radio) and expose part or all

of its functionality to the outside world (Figure 4-4).
• For eg, if we are modeling an automobile, we might wish to express the idea that a car "has-a" radio.

• Here, we have 2 independent classes working together, where the containing-class (e.g. Car) creates

and expose the contained-class (e.g. Radio) functionality.

There’s huge value in getting good at saying no.

C# PROGRAMMING & .NET

64

POLYMORPHISM: CLASSICAL & ADHOC

• Polymorphism means the ability to take more than one form. Polymorphism falls under 2 categories:

classical and adhoc.

1) Classical polymorphism can only take place in language that also supports classical-

inheritance. In this case, it is possible for a base class to define a set of members that can be

overridden by a sub-class (Figure 4-5).

• When subclasses override the behaviour defined by a base class, they are essentially redefining

how they respond to the same message.

• Classical polymorphism allows a base-class to enforce a given behaviour on all descendents.

This is a great boon to any language because we are able to avoid creating redundant methods

to perform a similar operation.

2) Adhoc polymorphism allows objects that are not related by classical inheritance to be

treated in a similar manner, provided that every object has a method of the exact same signature

(Figure 4-6).

• Language that support adhoc polymorphism employ a technique called late-binding to discover

at runtime the underlying type of a given object. Based on this discovery, the correct method is

invoked.

• In figure, there is no common base class among the CCircle, CHexagon and CRectangle classes.

However, each class supports a identical Draw() method.

Life is a skill. And like any other skill, once you know the ground rules & make the time to practice, you can get better.

C# PROGRAMMING & .NET

65

ENCAPSULATION SERVICE

• Wrapping up of data & methods into a single unit (called class) is known as encapsulation.

• The data is not accessible to the outside world and only those methods, which are wrapped in the

class, can access it.
• Encapsulation provides a way to preserve the integrity of state-data.

• For example, assume we have created a class named DBReader having methods open() and close():

• The class DBReader has encapsulated the inner details of locating, loading, manipulating and closing

data file. But, the object user need not worry about all these.

• Closely related to notion of encapsulation is data hiding. We do this by making data members as

private.

• The private data can be modified only through the public member functions of that class.

• C# provides following two techniques to manipulate private data members:

1) Enforcing Encapsulation Using Traditional Accessors & Mutators

• Consider, if we wish to provide safe access to the Employee's internal "fullName" data

member, we would write

• In the above example, GetFullName() and SetFullName() encapsulate a private string named
"fullName". The calling logic is as follows

2) Enforcing Encapsulation Using Class Properties

• Classes can define properties.

• Properties are used to simulate publicly accessible-points of data.

• Rather than requiring the user to call 2 discrete methods to get and set the state-data, the

user is able to call a single named field.

• To illustrate, we have provided a property named "EmpID" that wraps the internal "empID"

member variable

We see the world not as it is but as we are.

DBReader d=new DBReader();

d.open(“C:\MyDatabase.mdf”);
d.close();

}
}

//mutator

//remove any illegal characters(# ! ?)
//check maximum length before making assignment
fullName=s;

//Accessor

public class Employee

{
private string fullName;
public string GetFullName()
{

return fullName;
}
public void SetFullName(string s)
{

public static int Main(string[] args)
{

Employee p=new Employee();
p.SetFullName("John");
Console.WriteLine("Employee name is {0}",p.GetFullName());
p.fullName; //error occurs,can't access private data from an object instance
return 0;

}

public static int Main(string[] args)

{
Employee p=new Employee();
EmpID=81; //set the value
Console.WriteLine("person ID is {0}",p.EmpID);
return 0;

}

//custom property for EmpID data point

//property for ID data point

public class Employee

{
private int ID;
public int EmpID
{get{return ID;}
set {ID=value;}

}

C# PROGRAMMING & .NET

66

• A property is composed of a get block(accessor) and set block(mutator). The "value" keyword

represents the RHS of the assignment.

• "value" is also an object. However, the underlying type of object depends on which sort of

data it represents.

READ-ONLY AND WRITE-ONLY PROPERTIES

• When building custom properties, we can configure a read-only property. To do so, simply build a

property without a corresponding set block. Likewise, if we wish to have a write-only property, omit the

get block.
Eg:

UNDERSTANDING STATIC PROPERTIES

• The static members are bound to a given class, not an instance of that class. For e.g., assume that the

'Employee' type defines a point of static data to represent the name of organization. For this, we may

define a static property as follows.

PSEUDO ENCAPSULATION: CREATING READ-ONLY FIELDS

• Read-only fields offer data preservation via the "readonly" keyword. E.g.: assume we have a read-

only field named SSNField that offers an alternative manner for the caller to obtain an employee's SSN.

• Any attempt to make assignments to a field marked "readonly" results in a compiler error.

Greatness arrives for those who are never satisfied with what is, no matter how nice it looks.

public class Employee
{

private string empSSN;
public Employee(string fullName, int empID, float currPay, string SSN)

{
this.fullName=fullName;
this.empID=empID;
this.currPay=currPay;
this.empSSN=SSN;

}
//set block omitted to provide read-only property
public string SSN{ get{ return empSSN;}}

}

//static properties must operate on static data

public class Employee
{

private static string companyName;
public static string Company
{

get {return CompanyName;}
set {companyName=value;}

}
}

//set and get the name of company
public static int Main(string[] args)
{

Employee.Company="intel";
Console.WriteLine("these people work at {0}", Employee.Company);

}

public class Employee

{
public readonly string SSNField;
public Employee(string fullName,int empID,float currPay,string SSN)
{

thisfullName=fullName;
this.empID=empID;
this.currPay=currPay;
this.empSSN=SSN;
SSNfield=SSN; //assign read only field

}
}

C# PROGRAMMING & .NET

67

KEEPING FAMILY SECRETS: THE "PROTECTED" KEYWORD

• When a base class defines protected data or protected methods, it is able to create a set of members

that can be accessed directly by any descendent.

• The benefit of defining protected members i a base class is that derived types no longer have to

access the data using public methods or properties.

• The main downfall: when a derived type has direct access to its parent's internal data, it is very

possible to accidentally break existing business rules.

• As far as the object user is concerned, protected data regarded as private (as the user is "outside" of

the family).

PREVENTING INHERITANCE: SEALED CLASSES

• Consider the following figure 4-10.

• Here, PTSSalesPerson is a class representing a part-time SalesPerson. To prevent other classes from

extending this class (PTSalesman), we make use of "sealed" keyword.

• Because PTSalesPerson is sealed, it cannot serve as a base class to any other type. Thus, if we

attempted to extend PTSalesPerson, we receive a compiler error.

• The "sealed" keyword is most useful when creating standalone utility classes. For e.g., the "String"

class defined in the "System" namespace has been explicitly sealed.

Behind extraordinary achievement, you will always discover extraordinary effort.

public class Employee
{

protected string fullName;
protected int empID;

}

public sealed class PTSalesPerson: SalesPerson

{
public PTSalesPerson(string fullName,int empID): base(fullName,empID)
{
//some constructor logic
}

}

public sealed class string: Object

IComparable,ICloneable
IConvertible,IEnumerable { }

C# PROGRAMMING & .NET

68

PROGRAMMING FOR CONTAINMENT/DELEGATION

• To write program for has-a relationship. Consider a class Radio –

• Now, consider a class Car –

• Now, we have two classes viz. Radio and Car. Here, we can say, “Car has a Radio”. Now, the Car is

called containing Class and Radio is called contained class.

• To make the contained class to work, we need to re-define Car class as –

• To expose the functionality of the inner class to the outside world requires delegation.

• Delegation is the act of adding members to the containing class that make use of the functionality of

contained class.

• To make this function work, in the Main() function we can write –

• Thus by making one class to be a member of other class, we can establish has-a relationship. But it is

always the job of outer class to define a member function which activates the inner class objects.

You can expect only that which you inspect.

class Radio

{
public void TurnOn(bool on)
{

if(on)
Console.WriteLine(“Radio is on”);

else
Console.WriteLine(“Radio is off”);

}
}

}

public Car(string n, int m, int c)
{

name=n;
MaxSpeed=m;
CurrSpeed=c;

}
public void SpeedUp(int a)
{

if(carIsDead)
Console.WriteLine(“Out of order”);

else
{

CurrSpeed+=a;
}

}

{ MaxSpeed=100} public Car()

class Car
{

int CurrSpeed, MaxSpeed;
string name;
bool carIsDead=false;

class Car

{ ………..
private Radio rd=new Radio();

}

class Car

{……….
public void Tune(bool s)
{

rd.TurnOn(s); //delegate request to inner object

}
}

Car c=new Car();
c.Tune(false);

C# PROGRAMMING & .NET

69

POLYMORPHIC SUPPORT

• Consider the following example to illustrate the need of polymorphism.

• Assume we have a base class Employee and two derived classes Manager and SalesMan.

• Now, the classes Manager and SalesMan both contains the method Bonus(float). Thus in the Main()
function, we can call Bonus() through the objects of Manager and SalesMan –

• Obviously, the Bonus() method works same for both the objects. With the help of virtual and

override keywords, we can make same function to behave differently in base-class and all the derived

classes. For example,

• We can see that when the Bonus() method is invoked through base class object, the corresponding

method will be called. Whereas, when Bonus() is invoked with the object s of derived class, the

overridden method Bonus() will be called.

Life has a very fair accounting system & as one sows, one will reap.

class Employee

{
…….
public void Bonus(float b)
{

basicSal+=b;
}

}
class Manager:Employee
{
………..
}
class SalesMan: Employee
{
…………
}

Manager m=new Manager();

m.Bonus(500);
SalesMan s=new SalesMan()
s.Bonus(300);

}
}

//derived class Bonus() is called s.Bonus(300);
SalesMan s=new SalesMan()

//base class Bonus() is called

}
}

class Test
{

public static void Main()
{

Employee e=new Employee();
e.Bonus(100);

//use of base class method

class Employee
{

public virtual void Bonus(float b)
{

basicSal+=b;
}

}

class SalesMan:Employee
{

public override void Bonus(float b)
{

int salesBonus=0;

if(numOfSales<=100)
salesBonus=10;

elseif (numOfSales<=200)
salesBonus=20;

base.Bonus(b*salesBonus);

C# PROGRAMMING & .NET

70

ABSTRACT CLASSES

• Abstraction refers to the act of representing essential features without including the background

details or explanation.

• If we attempt to create an instance of Employee class, we are issued a compile-time error

ABSTRACT METHOD

• Abstraction refers to the act of representing essential features without including the background

details or explanation.
• Abstract base class may define any number of abstract members.

• "Abstract" keyword is used to define a method that does not provide a default implementation.

• Abstract method is equivalent to pure virtual functions of C++.

• To understand the need for abstract methods, consider the following figure 4-11:

Figure 4-11: Abstract method

• By making a base class method as abstract, we are making use of run-time polymorphism or late

binding. That is, the binding between the object and the method to be invoked is decided only at

runtime.

A mind once stretched by a new idea can never return to its original dimensions.

public abstract class Employee

{. . . }

public static int Main(string[] args)
{

Employee X=new Employee();
}

}
public class Hexagon:Shape()
{ …………..

public override void Draw() //has to override
{

Console.WriteLine(“Hexagon.Draw()”);
}

}

public class Test
{

public static void Main()
{

Circle c= new Circle();
c.Draw(); //Draw() method of Circle class is called
Hexagon h=new Hexagon();
h.Draw(); //Draw() method of Hexagon class is called

}
}

//has to override

public override void Draw()
{

Console.WriteLine(“Circle.Draw()”);
}

{

abstract class Shape

{
// completely abstract method. Note the semicolon at the end
public abstract void Draw();

}
public class Circle:Shape()

C# PROGRAMMING & .NET

71

VERSIONING CLASS MEMBERS

• C# provides facility of method hiding, which is logical opposite of method overriding.

• Assume the following situation (Figure 4-12):

Figure 4-12: Versioning class members

• The class Circle is derived from Shape. The Shape class has an abstract method Draw() which is

overridden within Circle class to indicate how to draw a circle.

• The class Oval behaves similar to Circle. But, methodology for drawing an oval is different from that of

circle. So, we need to prevent the Oval class from inheriting Draw() method. This technique is known as

versioning a class. This is achieved by using the key word new as shown below –

• Now, when we create an object of Oval class and invoke Draw() method, the most recently used

definition of Draw() is called. That is,

• Thus, the keyword new breaks the relationship between the abstract Draw() method defined by the

base class and the Draw() method in the derived class.

The real risk lies in riskless living.

public class Oval: Circle

{
public Oval()

{

}

public new void Draw()
{

//Oval specific drawing algorithm
}

}

//calls the Draw() method of Oval class
Oval ob=new Oval();
ob.Draw();

C# PROGRAMMING & .NET

72

CASTING BETWEEN

• Consider the following situation, where we have is-a relationship (Figure 4-13).

Figure 4-13: Casting between types

• The following declarations are purely valid.

• In all these situations, the implicit casting from derived class to base class is done by the C# CLR.

• On the other hand, when we need to convert base class reference to be stored in derived class

object, we should make explicit casting as –

• Here, the explicit cast from base class to derived class is done.
Determining the Type-of Objects

• C# provides three ways to determine if a base class reference is actually referring to derived types:

1) Explicit casting

2) is keyword

3) as keyword

• The following declarations are purely valid.

• In all these situations, the implicit casting from derived class to base class is done by the C# CLR.

• On the other hand, when we need to convert base class reference to be stored in derived class

object, we should make explicit casting as –

• Here, the explicit cast from base class to derived class is done.
• The usage of other two methodologies is depicted with the help of examples:

Numerical Casts

• In addition to casting between objects, the numerical conversions also follow similar rules. When we

are trying to cast larger (in size of type) type to smaller type, we need to make explicit casting:

• While converting from larger type to smaller type, there is a chance of data-loss.
• When we need to cast smaller type to larger type, the implicit casting is done automatically:

• There will not be any loss of data during such casting.

Your schedule is the best barometer for what you truly value & believe to be important.

object ob=new Manager();
Employee e=new Manager();
SalesMan s= new Part_timeSalesMan();

object ob;
Manager m=(Manager)ob;

object ob=new Manager();

Employee e=new Manager();
SalesMan s= new Part_timeSalesMan();

object ob;
Manager m=(Manager)ob;

//converting Employee type to SalesMan type
Employee e;

SalesMan s= e as SalesMan;
//do something with s

//checking whether ob is Manager
Object ob=new Manager();

if(ob is Manager)
//do something

int x=25000;
byte b=(byte)x; //loss of information

//implicit casting
byte b=23;
int x=b;

C# PROGRAMMING & .NET

73

NESTED TYPE DEFINITIONS

• In C#, it is possible to define a type (enum, class, interface, struct, delegate) directly within the

scope of a class.

• When a type is nested within a class, it is considered as a normal member of that class. For example,

• Nested type seems like has-a relationship, but it is not.

• In containment/delegation, the object of contained class is created within containing class. But, it is

possible to create the objects wherever we wish.

• But in nested types, the inner class definition is within the body of out class and hence, inner class

objects can not be created outside the outer class.

EXERCISES

1. Explain method overloading with example. (4)

2. Explain self reference in C# with example. (6)
3. Explain "Default Public Interface" of a type. (4)
4. Explain public and internal types with example. (6)
5. Explain “is-a” and “has-a” relationship with respect to inheritance. (6)
6. Compare classical vs. adhoc polymorphism. (6)
7. What is encapsulation? What are two ways of enforcing encapsulation? Give examples
for both the methods. (8)

8. Explain read only and write only properties with example. (6)
9. Explain static properties with example. (4)
10. Explain pseudo encapsulation with example. (4)
11. How do you prevent inheritance using sealed classes? Explain with an example. (6)

12. Write a program to demonstrate the concept of virtual and override keywords. (6)

13. Explain abstract classes and methods with example. (6)
14. Explain the concept of late binding with an example.
15. What do you mean by versioning members? Explain. (4)
16. Write a note on Casting. (4)

Focus + Daily Improvement + Time = Genius

class C1
{

……….. //members of outer class
class C2
{

………. //members of inner class
}

}

C# PROGRAMMING & .NET

74

Module 3: Delegates, Events, Exception handling and

ADO .Net

ERRORS, BUGS & EXCEPTION

Keywords Meaning

Errors These are caused by end-user of the application.
For e.g., entering un-expected value in a textbox, say USN.

Bugs These are caused by the programmer.

For e.g.
→ making use of NULL pointer or
→ referring array-index out of bound

Exceptions These are regarded as runtime anomalies that are difficult to prevent.

For e.g.
→ trying to connect non-existing database

→ trying to open a corrupted file
→ trying to divide a number by zero

THE ROLE OF .NET EXCEPTION HANDLING

• Programmers have a well-defined approach to error handling which is common to all .NET aware-

languages.

• Identical syntax used to throw & catch exceptions across assemblies, applications & machine

boundaries.

• Rather than receiving a cryptic-numerical value that identifies the problem at hand, exceptions are

objects that contain a human readable description of the problem.
Objects also contain a detailed snapshot of the call-stack that eventually triggered the exception.

• The end-user can be provided with the help-link information.

Help-link information point to a URL that provides detailed information regarding error at hand.

THE ATOMS OF .NET EXCEPTION HANDLING
• Programming with structured exception handling involves the use of 4 key elements:

1) A 'type' that represents the details of the exception that occurred.

2) A method that throws an instance of the exception-class to the caller.

3) A block of code that will invoke the exception-ready method (i.e. try block).

4) A block of code that will process the exception (i.e. catch block).

• C# offers 4 keywords {try, catch, throw and finally} that can be used to throw and handle

exceptions.
• The type that represents the problem at hand is a class derived from System.Exception.

THE SYSTEM.EXCEPTION BASE CLASS

• All system-supplied and custom exceptions derive from the System.Exception base class (which in

turn derives from System.Object).

Great achievement often happens when our backs are up against the wall.

public class Exception: object
{

public Exception();
public Exception(string message);
public string HelpLink { virtual get; virtual set;}
public string Message {virtual get;}
public string Source {virtual get; virtual set;}
public MethodBase TargetSite{get;}

}

C# PROGRAMMING & .NET

75

Pressure can actually enhance your performance.

C# PROGRAMMING & .NET

76

CORE MEMBERS OF SYSTEM.EXCEPTION TYPE
Member Meaning

Message This returns textual description of a given error.
The error-message itself is set as a constructor-parameter.

TargetSite This returns name of the method that threw the exception.

Source This returns name of the assembly that threw the exception.

HelpLink This returns a URL to a help-file which describes the error in detail.

StackTree This returns a string that identifies the sequence of calls that triggered
the exception.

InnerException This is used to obtain information about the previous exceptions that

causes the current exception to occur.

THROWING A GENERIC EXCEPTION
• During the program, if any exception occurs, we can throw a specific exception like

→ DivideByZeroException

→ FileNotFoundException

→ OutOfMemoryException

• The object of Exception class can handle any type of exception, as it is a base class for all type of

exceptions.

• Consider the following code:

• In the above example, if the entered-value d is greater than 100, then we throw an exception.
• Firstly, we have created a new instance of the System.Exception class,

then we have passed a message “crossed limit” to a Message property of Exception class.
• It is upto the programmer to decide exactly

→ what constitute an exception &

→ when the exception should be thrown.

• Using throw keyword, program throws an exception when a problem shows up.

The right thing to do is generally the hardest thing to do.

using System;

class Test
{

int Max=100;

public void Fun(int d)
{

if(d>Max)

throw new Exception("crossed limit!!!");
else

Console.WriteLine("speed is ={0}", d);
}

public static void Main()
{

Test ob=new Test();
Console.WriteLine("Enter a number:");

int d=int.Parse(Console.ReadLine());

ob.Fun(d);
}

}

Output:

Enter a number: 12

speed is =12

Enter a number: 567
Unhandled Exception: System.Exception: crossed limit!!!
at Test.Fun(Int32 d)
at Test.Main()

C# PROGRAMMING & .NET

76

CATCHING EXCEPTIONS

• A catch block contains a code that will process the exception.
• When the program throws an exception, it can be caught using “catch” keyword.
• Once the exception is caught, the members of System.Exception class can be invoked.

• These members can be used to
→ display a message about the exception

→ store the information about the error in a file and

→ send a mail to administrator

• Consider the following code:

• A try block contains a code that will check for any exception that may be encountered during its
scope.

• If an exception is detected, the program control is sent to the appropriate catch-block. Otherwise,

the catch-block is skipped.

• Once an exception is handled, the application will continue its execution from very next point after

catch-block.

Life is nothing more than a beautiful adventure.

using System;

class Test
{

int Max=100;

public void Fun(int d)
{

try
{

if(d>Max)
throw new Exception("crossed limit!!!");

}

catch(Exception e)
{

Console.WriteLine("Message:{0}",e.Message);
Console.WriteLine("Method:{0}",e.TargetSite);

}

//the error has been handled,

//continue with the flow of this application
Console.WriteLine("Speed is ={0}", d);

}

public static void Main()
{

Test ob=new Test();

Console.WriteLine("Enter a number:");
int d=int.Parse(Console.ReadLine());

ob.Fun(d);

}
}

Output-1:

Enter a number: 12
Speed is =12

Output-2:

Enter a number: 123
Message: crossed limit!!!
Method: Void Fun(Int32)
Speed is=123

C# PROGRAMMING & .NET

77

THE FINALLY BLOCK

• The try/catch block may also be attached with an optional "finally" block.

• A finally block contains a code that is executed "always", irrespective of whether an exception is

thrown or not.
• For example, if we open a file, it must be closed whether an exception is raised or not.

• The finally block is used to

→ clean-up any allocated memory

→ close a database connection

→ close a file which is in use
• The code contained within a 'finally' block executes "all the time", even if the logic within try clause

does not generate an exception.

• Consider the following code:

No life is perfect. We all must face challenges, both large & small.

using System;

class DivNumbers
{

public static int SafeDivision(int num1, int num2)
{

if(num2==0)
throw new DivideByZeroException(“you cannot divide a number by 0”);

return num1/num2;

}

static void Main(string[] args)
{

int num1=15, num2=0;
int result=0;

try
{

result=SafeDivision(num1,num2);
}
catch(DivideByZeroException e)
{

Console.WriteLine("Error message = {0}", e.Message);
}
finally

{
Console.WriteLine("Result: {0}", result);

}
}

}

Output:

Error message = you cannot divide a number by 0
Result: 0

C# PROGRAMMING & .NET

78

THE TARGETSITE PROPERTY

• This property is used to determine various details about the method that threw a given exception.
• Printing the value of TargetSite will display the return type, name, and parameters of the method
that threw the exception.

• This can also be used to obtain name of the class that defines the offending-method.

THE STACKTRACE PROPERTY

• This property is used to identify the sequence of calls that resulted in the exception.

• We never set the value of StackTrace, as it is set automatically at the time the exception is created.

THE HELPLINK PROPERTY

• This returns a URL to a help-file describing the error in detail.

• By default, the value managed by HelpLink property is an empty string.
We can fill this property with a relevant value (i.e. URL).

• Consider the following code to illustrate the properties TargetSite, StackTrace & HelpLink:

The only way to have a life is to commit to it like crazy.

using System;

class Test
{

int Max=100;

public void Fun(int d)
{

try
{

Exception ex= new Exception("crossed limit!!!");
ex.HelpLink="g:\\Help.doc";
throw ex;

}
catch(Exception e)

{
Console.WriteLine("Error caught");
Console.WriteLine("Class defining member= {0}", e.TargetSite.DeclaringType);
Console.WriteLine("Member type= {0}", e.TargetSite.MemberType);
Console.WriteLine("Member name={0}", e.TargetSite);
Console.WriteLine("Message={0}", e.Message);
Console.WriteLine("Stack={0}", e.StackTrace);
Console.WriteLine("Help link ={0}",e.HelpLink);

}

//the error has been handled, continue with the flow of this application
Console.WriteLine("Speed is ={0}", d);

}

public static void Main()
{

Test ob=new Test();

Console.WriteLine("Enter a number=");
int d=int.Parse(Console.ReadLine());

ob.Fun(d);
}

}

Output:

Enter a number=127
Error caught!
Class defining member= Test
Member type= Method
Member name= Void Fun(Int32)
Message= crossed limit!!!
Stack= at Test.Fun(Int32)

Help link= g:\Help.doc
Speed is =127

C# PROGRAMMING & .NET

79

CLR SYSTEM-LEVEL EXCEPTIONS (SYSTEM.SYSTEMEXCEPTION)

• The .NET base class library(BCL) defines many classes derived from System.Exception.
• For example, the System namespace defines core error-objects such as

→ DivideByZeroException

→ OutOfMemoryException

→ IndexOutOfRangeException
• Exceptions thrown by methods in the BCL are called system-exceptions.

• Main idea: When an exception-type derives from System.SystemException, it can be concluded that

the exception was raised by .NET runtime (rather than by the custom code-base of the executing

application).

• If we fail to handle a raised exception, the operating-system will trigger a "last chance exception".

CUSTOM APPLICATION-LEVEL EXCEPTIONS (SYSTEM.APPLICATIONEXCEPTION)

• All .NET exceptions are class types and

hence application-specific(or user defined) exceptions can be created.

• Main idea: To identify the source of the (nonfatal) error. When an exception-type derives from

System.ApplicationException, it can be concluded that the exception was raised by code-base of the

executing application rather than by .NET BCL.

• The relationship between exception-centric base classes are shown below (Figure 5.1) –

Figure 5.1: Application and system exceptions

Top athletes know that practice is how you get to greatness.

public class SystemException : Exception
{

// Various constructors.
}

public class ApplicationException : Exception

{
// Various constructors.

}

C# PROGRAMMING & .NET

80

BUILDING CUSTOM EXCEPTIONS, TAKE ONE

• We can always throw instances of System.Exception to indicate runtime-error.
But, it is better to build a custom class that encapsulates unique details of our current problem.

• Main use: We need to create custom exceptions only when the error is tightly bound to the class issuing

the error.

• Like any class, the exception-class also may include fields, methods and properties that can be used

within the catch-block.

• We can also override any virtual member in the parent class. For example, assume we wish to build a

custom exception (named CarIsDeadException) to represent that the car has crossed the maximum

speed limit.

BUILDING CUSTOM EXCEPTIONS, TAKE TWO
• We can write the constructors, methods and overridden properties as we wish in our exception class.

• But it is always recommended approach to build a relatively simple type that supplied three named

constructors matching the following signature:

• Most of the user-defined exceptions follow this pattern.
• Because, many times, the role of a custom exception is

→ not to provide additional functionality beyond what is provided by its base class. Rather,

→ to provide a strongly named type that clearly identifies the nature of the error.

When you find the mission that your life will be dedicated to, you'll wake up each day with that fire in your belly.

public class CarIsDeadException : System.Exception

{
private string messageDetails;
public CarIsDeadException(){ }

public CarIsDeadException(string message)
{

messageDetails = message;
}

// Override the Exception.Message property.

public override string Message
{

get
{

return string.Format("Car Error Message: {0}", messageDetails);
}

}
}

public class Car
{

……………………
public void SpeedUp(int delta)
{

try
{

speed=current_speed + delta;
if(speed>max_speed)

throw new CarIsDeadException(“Ford Icon”);
}
catch(CarIsDeadException e)
{

Console.WriteLine(“Method:{0}”, e.TargetSite);
Console.WriteLine(“Message:{0}”, e. Message);

}
}
……………………..

}

public class CarIsDeadException: System.Exception

{
public CarIsDeadException() { . . .}
public CarIsDeadException(string message):base(message) { . . .}
public CarIsDeadException(string message,Exception innerEx):base(message,innerEx) { . . .}

}

C# PROGRAMMING & .NET

81

BUILDING CUSTOM EXCEPTIONS, TAKE THREE

• The exceptions can be categorized as system-level or application-level types.

• If we want to clearly mark the exception to be thrown by the application itself and not by BCL, then

we can redefine as –

HANDLING MULTIPLE EXCEPTIONS

• In reality, the code within try-block may trigger multiple possible exceptions.

• To catch multiple exceptions, we construct multiple catch-blocks for a single try-block

• When an exception is thrown, it will be processed by the "nearest available" catch.

• Consider the following code:

• Here, the class Exception is a base class for all custom and system exceptions. Hence, it can handle
any type of exceptions.

• If Exception is the first catch-block, the control will jump to that block itself and the other two

exceptions are unreachable.
• Thus, we have to make sure the catch-blocks are structured such that

the very first catch is the most specific exception(or most derived type in inheritance hierarchy)

whereas the final catch is the most general (or top most base class in inheritance hierarchy).

If we keep doing things the same way, we're only going to see the same results.

public class CarIsDeadException: ApplicationException

{
public CarIsDeadException() { . . .}
public CarIsDeadException(string message):base(message) { . . .}
public CarIsDeadException(string message,Exception innerEx):base(message,innerEx) { . . .}

}

using System;

class DivNumbers
{

public static int SafeDivision(int num1, int num2)
{

if(num2=0)
throw new DivideByZeroException(“you cannot divide a number by 0”);

return num1/num2;
}

static void Main(string[] args)
{

int num1=15, num2=0;
int result=0;

try
{

result=SafeDivision(num1,num2);
}
catch(DivideByZeroException e)
{

Console.WriteLine("Error message = {0}", e.Message);
}
catch(OutOfMemoryException e)
{

Console.WriteLine("Error message = {0}", e.Message);
}
catch(Exception e)
{

Console.WriteLine("Error message = {0}", e.Message);
}
finally
{

Console.WriteLine("Result: {0}", result);
}

}
}

Output:

Error message = you cannot divide a number by 0
Result: 0

C# PROGRAMMING & .NET

82

GENERIC CATCH STATEMENTS

• C# supports a generic catch block that does not explicitly define the type of exception. That is, we

can write:

• But, using this type of catch blocks indicates that the programmer is un-aware of the type of

exception that is going to occur, which is not acceptable. Hence it is always advised to use specific type

of exceptions.

RETHROWING EXCEPTIONS

• To re-throw exception, simply make use of the "throw" keyword within a catch-block.

DYNAMICALLY IDENTIFYING APPLICATION AND SYSTEM LEVEL EXCEPTIONS

• It is possible to generalize the catch blocks in such a way that all application level exceptions are

handled apart from possible system-level exceptions.

• Though C# has the ability to discover at runtime the underlying source of an exception, we are
gaining nothing by doing so.

• Because some BCL methods that should ideally throw a type derived from System.SystemException.

are actually derived from System.ApplicationException or even more generic System.Exception.

EXERCISES

1. Differentiate between bugs, errors and exceptions. Explain the role of .NET

exception handling. (6)

2. Define the following keywords with program: (6)

i)try ii)throw iii)catch iv)finally

3. List out & explain core members of System.Exception class. (4)
4. With a program, explain & illustrate the use of System.Exception base class in

throwing generic exceptions. (6)

5. With a program, explain & illustrate the use of System.Exception base class in

catching exceptions. (6)

6. Briefly explain the usage of finally block. (4)

7. With a program, explain following properties: TargetSite, StackTrace, HelpLink. (6)
8. Compare System level exception vs. Application level exception. (4)
9. With a program, explain how to build custom exception. (6)
10. Write C# application to illustrate handling multiple exceptions. (4)
11. Why is proper ordering of catch blocks necessary in C#? (4)

The supreme happiness of life is the conviction that we are loved.

catch

{
Console.WriteLine(“Some error has occurred”);

}

try

{ . . . }

catch(CarIsDeadException e)
{

throw e
}

try

{
//do something

}
catch(ApplicationException e)
{

}
catch(SystemException e)
{

}

C# PROGRAMMING & .NET

83

UNDERSTANDING OBJECT LIFETIME

• Automatic memory-management: Programmers never directly de-allocate an object from memory

(therefore there is no "delete" keyword).

• Objects are allocated onto a region-of-memory termed the 'managed-heap' where they will be

automatically de-allocated by CLR at “sometime later”.
• The golden rule of .NET Memory Management: “Allocate an object onto the managed-heap using the

new keyword and forget about it”.
• CLR removes the objects which are

→ no longer needed or

→ unreachable by current application

• Consider the following code:

• Here, c is created within the scope of Main(). Thus, once the application shuts down, this reference is
no longer valid and therefore it is a candidate for garbage collection.

• But, we cannot surely say that the object „c‟ is destroyed immediately after Main() function. All we

can say is when CLR performs the next garbage collection; c is ready to be destroyed.

THE CIL OF "new"

• When C# compiler encounters the 'new' keyword, it will emit a CIL “newobj" instruction to the code-

module.
• The garbage-collector(GC) is a tidy house-keeper.

GC compacts empty blocks of memory for purpose of optimization.

• The heap maintains a new-object-pointer(NOP).
NOP points to next available slot on the heap where the next object will be placed.

• The newobj instruction informs CLR to perform following sequence of events:

1) CLR calculates total memory required for the new object to be allocated (Figure 5.2).

If this object contains other internal objects, their memory is also taken into account.
Also, the memory required for each base class is also taken into account.

2) Then, CLR examines heap to ensure that there is sufficient memory to store the new object.

If yes, the object's constructor is called and a reference to the object in the memory is returned

(which just happens to be identical to the last position of NOP).
3) Finally, CLR advances NOP to point to the next available slot on the heap.

Success lies in its execution.

//create a local car object

public static int Main(string[] args)
{

//place an object onto the managed heap
Car c=new Car("zen",200,100);

}
// if 'c' is the only reference to the
//Car object, it may be destroyed when
// Main exits

C# PROGRAMMING & .NET

84

THE BASICS OF GARBAGE COLLECTION

• Garbage collection is a process of reclaiming memory occupied by unreachable objects in the

application.

• The golden rule of garbage collection:”If the managed-heap does not have sufficient memory to

allocate a new object, garbage collection will occur”.

• A root is a storage-location which contains a reference to an object on the heap.

The root can fall into following categories:
→ references to global/static objects
→ references to local objects within a given method.

• When a garbage-collection occurs, the CLR will inspect all objects on the heap to determine if it is still

in use in the application.
• To do so, the CLR will build an object-graph.

Object-graph represents each object on the heap that is still reachable.

• When garbage-collector determines that a given root is no longer used by a given application, the

object is marked for termination.

• When garbage-collector searches the entire heap for orphaned-root, the underlying memory is

reclaimed for each unreachable object.

• Then, garbage-collector compacts empty block of memory on the heap (which in turn will cause CLR

to modify the set of application roots to refer to the correct memory location).
• Finally, the NOP is re-adjusted to point to the next available slot.

• To illustrate this concept, assume that the heap contains a set of objects named A, B, C, D, E, F, and

G (Figure 5.3).

• Let C and F are unreachable objects which are marked for termination as shown in the following

diagram:

Figure 5.3: before garbage collection

• After garbage-collection, the NOP is readjusted to point to the next available slot as shown in the

following diagram (Figure 5.4):

Figure 5.4: after garbage collection

Every man takes the limits of his own field of vision for the limits of the world.

C# PROGRAMMING & .NET

85

FINALIZING A TYPE

• The .NET garbage collection scheme is non-deterministic in nature.
i.e. it is not possible to determine exactly when an object will be de-allocated from the memory.

• As a result, there is a possibility that the objects are holding unmanaged resources longer than

necessary.

• When we build .NET types that interact with unmanaged resourceS, we like to ensure that these

resources are released in-time rather than waiting for .NET garbage collector.
• To facilitate this, C# provides an option for overriding the virtual System.Object.Finalize() method.

• It is not possible to directly override the Finalize() using standard C# syntax as shown below:

• Rather, a C++ type destructor syntax must be used as shown below:

• The C# destructor style syntax can be understood as a shorthand notation for the following code:

(INDIRECTLY) INVOKING SYSTEM.OBJECT.FINALIZE()

• Finalization will automatically take place when an application is unloaded by the CLR.

• Rule: When an application is unloaded, the Finalize() method is invoked for all finalizable objects.

• Consider the following example:

When things go good, we feel happy. When things go bad, we feel sad.

This kind of approach to living is a weak way to live

public class Test
{

protected override void Finalize() //compile time error!!!
{ ………. }

}

public class Test
{

~Test()
{

Console.WriteLine("->finalizing test");
}

}

protected override void Test()

{
try
{

Console.WriteLine("->finalizing test ")
finally
{base.Finalized(); }

}
}

using System;

class Test
{

public Test()
{ ……….. }

~Test()
{

Console.WriteLine("Finalizing Test !!!");
}

public static void Main()
{

Console.WriteLine(“Within Main()");
Test t=new Test();
Console.WriteLine(“Exiting Main()");

}
}

Output:

Within Main()
Exiting Main()
Finalizing Test!!!

C# PROGRAMMING & .NET

86

THE FINALIZATION PROCESS

• Finalizer is used to ensure that an object can clean-up unmanaged resources.

• When an object is placed on a heap using new, the CLR automatically inspects whether this object

supports a custom Finalize() method.
• If yes, the object is marked as 'finalizable' & a pointer to this object is stored in Finalization-Queue.

• Finalization-Queue is a table maintained by the CLR that points to every object that must be finalized

before it is removed from the heap.
• When the garbage collector starts its action, it

→ inspects each entry in the FQ and → copies object off the heap to finalization-reachable table

• Then, a separate thread is generated to invoke the Finalize() for each object on f-reachable table at

the next garbage collection.
• Drawback: This process will consume time and hence affects the performance of the application.

BUILDING AN ADHOC DESTRUCTION METHOD

• Process of finalizing an object is quite time consuming and hence affects performance of application.

• When a type manipulates unmanaged resources, it must be ensured that they are released in a

timely and predictable manner.

• Solution: The programmer can write a custom adhoc method that can be invoked manually before

the object goes out of scope.
• The custom method will take care of cleaning up the unmanaged resources.

• This method will
→avoid object being placed at finalization-queue & →avoid waiting for garbage collector to clean-up

THE IDISPOSABLE INTERFACE

• In order to provide symmetry among all objects that support an explicit destruction method, the .NET

BCL defines an interface named IDisposable.
• This interface supports a single member named Dispose().

• Now, the application can implement this interface and define Dispose() method.

• Rule: Always call Dispose() for any object we manually allocate to heap. The assumption we should

make is that if class designer chose to support Dispose() method, type has some cleanup to perform.

• Dispose() method can be called manually before the object goes out of scope.
• This method will take care of cleaning up the unmanaged resources.
• This method will

→avoid object being placed at finalization-queue & →avoid waiting for garbage collector to clean-up

We all have to do our interior work. It's our highest responsibility.

}
}

}
//clean up unmanaged resources

//name of method can be anything public void Kill()
{

public class Car
{

finally
{

public interface IDisposable

{
public void Dispose();

}

}

public static int Main(string[] args)

{
Car c1=new Car("car one",40,10);
c1.Dispose();
return 0;

}

{

}
public class App

public void Dispose()

{
//clean up your internal unmanaged resources

}

{
public Car:IDisposable

C# PROGRAMMING & .NET

87

REUSING THE C# USING KEYWORD

• When we are using an object that implements IDisposable, it is quite common to use structured

exceptions just to ensure the Dispose() method is called when exception occurs:

• C# provides another way of doing this with the help of using keyword:

• One good thing here is, the Dispose() method is called automatically when the program control
comes out of using block.

• But there is a disadvantage: If at all the object specified at using does not implement IDisposable,

then we will get compile-time error.

GARBAGE COLLECTION OPTIMIZATION

• To locate unreachable objects, CLR does not inspect every object placed on heap to find orphaned-

roots. Because, doing so will consume more time for larger applications.
• Each object on the heap is assigned to a given "generation".

• The main idea behind generation:

→The longer an object has existed on the heap; the more likely it is to stay there.

For example, application-level objects.
→Conversely, if an object is recently placed on heap; it may be dereferenced by application quickly.

For example, objects within a scope of a method.

• Each object belongs to one of following generations:

i) Generation-0(G0): Identifies a newly allocated object that has never been marked for

garbage collection.
ii) Generation-1(G1): Identifies an object that has survived one garbage collection sweep.

iii) Generation-2(G2): Identifies an object that has survived more than one garbage collection

sweep.
• Now, when garbage collection occurs, the GC marks and sweeps all generation-0 objects first.

• If this results in the required amount of memory, the remaining objects are promoted to the next

available generation (G0->G1 & G1->G2).

• If all generation-0 objects have been removed from the heap, but more memory is still necessary,

generation-1 objects are marked and swept, followed(if necessary) by generation-2 objects.

CORE MEMBERS OF SYSTEM.GC TYPE
Member Meaning

Collect () This forces GC to call the Finalize() method for every object on managed-heap.

GetTotalMemory() This returns the estimated amount of memory currently being used by all objects in

the heap.
GetGeneration() This returns the generation to which an object currently belongs.

MaxGeneration() This returns the maximum generations supported on the target system.

ReRegisteredForFinalize() This sets a flag indicating that the suppressed-object should be reregistered as

finalize.
SuppersFinalize() This sets a flag indicating that a given object's Finalize() method should not be called.

WaitForPendingFinalizers() This suspends the current thread until all finalizable objects have been finalized.

This method is typically called directly after invoking GC.Collect().

Man's main task in life is to give birth to himself, to become what he potentially is.

}
}

……..
c.Dispose();

} ……..

} …….. {

catch
{
finally
{

public void Test()
{

Car c=new Car();
try

public void Test()

{
using(Car c=new Car())

{
//Do something
//Dispose() method is called automatically when this block exits

}
}

C# PROGRAMMING & .NET

88

BUILDING FINALIZATION AND DISPOSABLE TYPES

• Consider an example to illustrate how to interact with .NET garbage collector.

• Both Dispose() and Finalize() (or destructor) methods are used to release the unmanaged resources.

• As we can see in the above example, when Dispose() method is invoked through an object, we can

prevent the CLR from calling the corresponding destructor with the help of SuppressFinalize() method of

GC class.

• By manually calling Dispose() method, we are releasing the resources and hence there is no need to

call finalizer.

• Calling the Dispose() function manually is termed as explicit object de-allocation and making use of

finalizer is known as implicit object de-allocation.

FORCING A GARBAGE COLLECTION

• We know that, CLR will automatically trigger a garbage collection when a managed heap is full.

• We, the programmers, will not be knowing, when this process will happen.

• However, if we wish, we can force the garbage collection to occur using the following statements:

GC.Collect();

GC.WaitForPendingFinalizers();

• The method WaitForPendingFinalizers() will allow all finalizable objects to perform any necessary

cleanup before getting destroyed. Though, we can force garbage collection to occur, it is not a good

programming practice.

The starting point of enlightenment, a goal that every person should strive for, is inner leadership.

using System;

class Car : IDisposable
{

string name;

public Car(string n)
{

name=n;
}

~Car()

{
Console.WriteLine("Within destructor of {0}", name);

}

public void Dispose()

{
Console.WriteLine("Within Dispose() of {0}", name);
GC.SuppressFinalize(this);

}
}

class Test
{

public static void Main()
{

Car c1=new Car("One");
Car c2=new Car("Two");
Car c3=new Car("Three");
Car c4=new Car("Four");

c1.Dispose();
c3.Dispose();

}
}

Output:

Within Dispose() of One
Within Dispose() of Three
Within destructor of Four
Within destructor of Two

C# PROGRAMMING & .NET

89

PROGRAMMATICALLY INTERACTING WITH GENERATIONS

• We can investigate the generation of an object currently belongs to using GC.GetGeneration().
• GC.Collect() allows to specify which generation should be checked for valid application roots.

• Consider the following code:

EXERCISES

1. Explain object lifetime in .NET. (6)

2. Explain the CIL of "new". (6)
3. Describe the role of .NET garbage collection. (6)
4. Explain finalizing a type in.NET. (4)
5. With program,explain how to invoke System.Object.Finalize() indirectly (4)
6. Explain finalization process in .NET. (6)
7. Explain adhoc destruction method. (4)
8. With a program, explain the use of IDisposable interface. (4)
9. Explain use of ‘using’ keyword with respect to garbage collection. (4)
10. Explain how garbage collection is optimized in .NET. (6)
11. List out & explain core members of System.GC class. (4)
12. With a program, explain how to build finalization & disposable types. (6)
13. With a program, explain how to interact with generations. (6)

To have new things in your life such as new levels of joy and new experiences of fulfillment, you must begin to do

new things.

class Car:IDisposable

{

string name;

public Car(string n)

{

name=n;

}

~Car()

{

Console.WriteLine("Within destructor of {0}", name);

}

public void Dispose()

{

Console.WriteLine("Within Dispose() of {0}", name);

GC.SuppressFinalize(this);
}

}

class Test
{

public static void Main()

{

Car c1=new Car("One");
Car c2=new Car("Two");

Car c3=new Car("Three");

Car c4=new Car("Four");

Console.WriteLine("c1 is Gen {0}", GC.GetGeneration(c1));

Console.WriteLine("c2 is Gen {0}", GC.GetGeneration(c2));
Console.WriteLine("c3 is Gen {0}", GC.GetGeneration(c3));

Console.WriteLine("c4 is Gen {0}", GC.GetGeneration(c4));

c1.Dispose();
c3.Dispose();

GC.Collect(0);

Console.WriteLine("c1 is Gen {0}", GC.GetGeneration(c1));

Console.WriteLine("c2 is Gen {0}", GC.GetGeneration(c2));

Console.WriteLine("c3 is Gen {0}", GC.GetGeneration(c3));
Console.WriteLine("c4 is Gen {0}", GC.GetGeneration(c4));

}

}

Output: C1 is Gen 0

C2 is Gen 0

C3 is Gen 0

C4 is Gen 0

Within Dispose() of One
Within Dispose() of Three

C1 is Gen 1

C2 is Gen 1

C3 is Gen 1

C4 is Gen 1

Within Destructor of Four

Within Destructor of Two

C# PROGRAMMING & .NET

90

DEFINING INTERFACES

• An interface is a collection of abstract-methods that may be implemented by a given class (in other

words, an interface expresses a behavior that a given class/structure may choose to support).
• Interface is a pure protocol. i.e.

→ It never defines data-type & → It never provides a default implementation of the methods

• Interface

→ never specifies a base class (not even System.Object) &

→ never contains member that do not take an access-modifier

• This can define any number of properties.

• Here is the formal definition:

• Interface-types are somewhat useless on their own (as they are nothing more than a named-
collection of abstract-members). Given this, we cannot allocate interface-types:

IMPLEMENTING AN INTERFACE

• A class/structure can extend its functionality by supporting a given interface using a comma-

delimited list in the type-definition.

• Implementing an interface is an all-or-nothing proposition i.e. the supporting-class cannot selectively
choose the members it wants to implement.

• A given class may implement many interfaces but the class may have exactly one base class.

• Following figure illustrates IPointy-compatible classes.

• Consider the following code:

• Here, each class returns its number of points to the caller when asked to do so.

It takes great inner power to take a serious look at the way we're living & make the midcourse corrections that will

set up back on track.

public interface IPointy
{

int GetNumberOfPoints();
}

}
// Compiler error!

// Ack! Illegal to "new" interface types.

static void Main(string[] args)
{

IPointy p = new IPointy();

// This class derives from System.Object and implements single interface.

public class SomeClass : ISomeInterface
{ ... }
// This struct derives from System.ValueType and implements 2 interfaces.
public struct SomeStruct : ISomeInterface, IPointy
{ ... }

{ return 6; }

}
public class Triangle: Shape, IPointy
{

public Triangle() {. . }
public int GetNumberOfPoints() // IPointy Implementation.
{ return 3; }

}

// IPointy Implementation.

public class Hexagon: Shape, IPointy

{
public Hexagon() {. . }
public int GetNumberOfPoints()

C# PROGRAMMING & .NET

91

CONTRASTING INTERFACES TO ABSTRACT BASE CLASS

Abstract Base Classes
• Abstract base classes define a group of abstract-methods.
• They can

→ define public, private & protected state data and

→ define any number of concrete-methods that can be accessed by the subclasses.

Interfaces

• An interface is a collection of abstract-methods that may be implemented by a given class (in other

words, an interface expresses a behavior that a given class/structure may choose to support).
• Interface is a pure protocol. i.e.

→ It never defines data-type &

→ It never provides a default implementation of the methods.

• Interface

→ never specifies a base class (not even System.Object) &

→ never contains member that do not take an access-modifier (as all interface-members are

implicitly public).
• Consider the following code:

• The interface-based protocol allows a given type to support numerous behaviors

while avoiding the issues that arise when deriving from multiple base classes.

• Interface-based programming provides a way to add polymorphic behaviour into a system:

If multiple classes implement the same interface in their unique ways, we have the power to

treat each type in the same manner.

Dedicate yourself to constant & never ending self discovery.

public interface IAmBadInterface

{
// Error, interfaces can't define data!
int myInt = 0;
// Error, only abstract members allowed!
void MyMethod()
{

Console.WriteLine("Hi!");
}

}

C# PROGRAMMING & .NET

92

INVOKING INTERFACE MEMBERS AT THE OBJECT LEVEL

• One way to interact with functionality-supplied by a given interface is to invoke the methods directly

from the object-level.

• Following 3 methods can be used to check which interfaces are supported by a given type:
Method 1: Explicit Casting

• An explicit-cast can be used to obtain an interface-reference.

• When we attempt to access an interface not supported by a given class using a direct-cast, the

runtime throws an InvalidCastException.

Method 2: The "as" Keyword
• The "as" operator can be used to downcast between types or implemented-interface.

• The "as" keyword assigns the interface-variable to null if a given interface is not supported by the

object (rather than throwing an exception).

Method 3: The "is" Keyword
• The "is" operator can be used verify at runtime if an object is compatible with a given type.

• We may discover at runtime which items in the array support this behavior. For example,

We all have our blind spots -- we need to acknowledge them and bring them into the light of awareness,

where they'll be healed.

public static void Main(string[] args)

{ // Call new Points member defined by IPointy
Hexagon hex=new Hexagon();
Console.WriteLine("points: {0}", hex.GetNumberOfPoints()); //prints 6
Triangle tri=new Triangle();
Console.WriteLine("points: {0}", tri.GetNumberOfPoints()); //prints 3

}

public static void Main(string[] args)

{ Hexagon hex=new Hexagon("bill");
IPointy ipt;
try
{

ipt=(IPointy)hex; // explicit casting
Console.WriteLine(ipt.GetNumberOfPoints());

}
catch (InvalidCastException e)
{

Console.WriteLine(e.Message);
}

}

public static void Main(string[] args)

{
// Can we treat h as IPointy?
Hexagon hex=new Hexagon("peter");
IPointy ipt = hex as IPointy;
if(ipt != null)

Console.WriteLine(ipt.GetNumberOfPoints());
else

Console.WriteLine("OOPS! Not pointy...");
}

public static void Main(string[] args)

{ Triangle tri=new Triangle();
if(tri is IPointy)

Console.WriteLine(tri.GetNumberOfPoints());
else

Console.WriteLine("OOPS! Not Pointy");
}

public static void Main(string[] args)

{ Shape[] s = { new Hexagon(), new Circle(), new Triangle("Ram"), new Circle("Sham")} ;

for(int i = 0; i < s.Length; i++)
{
//Recall the Shape base class defines an abstract Draw() member, so all shapes know how to draw themselves.

s[i].Draw();
if(s[i] is IPointy)

Console.WriteLine("Points: {0} ", ((IPointy)s[i]).GetNumberOfPoints());
else

Console.WriteLine("OOPS! Not Pointy");
}

}

C# PROGRAMMING & .NET

93

INTERFACES AS PARAMETERS

• Given that interfaces are valid .NET types, we may construct methods that take interfaces as
parameters.

• To illustrate, assume we have defined another interface named IDraw3D:

• Next, assume that two of our three shapes (Circle and Hexagon) have been configured to support
this new behavior:

• If we now define a method taking an IDraw3D interface as a parameter, we are able to effectively

send in any object implementing IDraw3D (if we attempt to pass in a type not supporting the

necessary interface, we receive a compile-time error).

• Consider the following:

• Here, the triangle is never drawn, as it is not IDraw3D-compatible

The greater the gap between who you are on the inside and the way you occur on the outside,

the greater the unhappiness you'll feel in your life

// Models the ability to render a type in stunning 3D.

public interface IDraw3D
{

void Draw3D();
}

// Circle supports IDraw3D

public class Circle : Shape, IDraw3D
{

public void Draw3D()
{

Console.WriteLine("Drawing Circle in 3D!");

}
}

// Hexagon supports IPointy and IDraw3D
public class Hexagon : Shape, IPointy, IDraw3D
{

public void Draw3D()
{

Console.WriteLine("Drawing Hexagon in 3D!");
}

}

// Make some shapes. If they can be rendered in 3D, do it!
public class Program
{

// I'll draw anyone supporting IDraw3D.

public static void DrawIn3D(IDraw3D itf3d)
{

Console.WriteLine("Drawing IDraw3D compatible type");
itf3d.Draw3D();

}

static void Main()
{

Shape[] s = { new Hexagon(), new Circle(), new Triangle()};
for(int i = 0; i < s.Length; i++)
{

if(s[i] is IDraw3D)
DrawIn3D((IDraw3D)s[i]);

}
}

}

C# PROGRAMMING & .NET

94

UNDERSTANDING EXPLICIT INTERFACE IMPLEMENTATION

• Explicit interface implementation can be used to ensure that the methods defined by a given
interface are only accessible from an interface-reference rather than an object-reference.
• Using this technique, we cannot make use of an access-modifier.

• Main purpose: to ensure that a given interface method is bound at the interface-level.

• Consider the following code:

• Interface as Polymorphic Agent: This can be very helpful when we want to implement a number of
interfaces that happen to contain identical methods. For e.g.:

You wouldn't be able to see the great quality of another person unless you knew that quality in yourself.

public interface IDraw3D

{ void Draw(); }

public class Shape
{

void Draw()
{

Console.WriteLine("drawing a shape");
}

}

public class Line: Shape, IDraw3D
{

void IDraw3D.Draw()
{

Console.WriteLine("drawing a 3D line");
}
public override void Draw()
{

Console.WriteLine("drawing a line");
}

}

static void Main(string[] args)
{

//This invokes the overridden Shape.Draw() method.
Line myLine = new Line();
myLine.Draw();

// This triggers the IDraw3D.Draw() method.
IDraw3D itfDraw3d= (IDraw3D)myLine;

itfDraw3d.Draw();
}

public interface IDraw

{ void Draw(); }

public interfaceIDraw3D
{ void Draw(); }

public interface IDrawToPointer
{ void Draw(); }

C# PROGRAMMING & .NET

95

BUILDING INTERFACE HIERARCHIES

• Just as a class can serve as a base class to other classes, it is possible to build derived relationships
among interfaces.
• The topmost interface defines a general behaviour

while the most derived interface defines more specific behaviors.

• Any methods defined by the base interfaces are automatically carried into the definition.

Living your best life is really mostly about recapturing what you gave up.

// The base interface.

public interface IDrawable
{

void Draw();
}

public interface IPrintable : IDrawable
{

void Print();
}

public interface IMetaFileRender : IPrintable
{

void Render();
}

// This class supports IDrawable, IPrintable, and IMetaFileRender.
public class SuperImage : IMetaFileRender
{

public void Draw()
{

Console.WriteLine("Basic drawing logic.");
}
public void Print()
{

Console.WriteLine("Draw to printer.");
}
public void Render()
{

Console.WriteLine("Render to metafile.");
}

}

// Exercise the interfaces.
static void Main(string[] args)
{

SuperImage si = new SuperImage();

// Get IDrawable.
IDrawable itfDraw = (IDrawable)si;
itfDraw.Draw();

// Now get ImetaFileRender, which exposes all methods up

// the chain of inheritance.
if (itfDraw is IMetaFileRender)
{

IMetaFileRender itfMF = (IMetaFileRender)itfDraw;
itfMF.Render();
itfMF.Print();

}
}

Output:
Basic drawing logic
Render to metafile

Draw to printer

C# PROGRAMMING & .NET

96

INTERFACES WITH MULTIPLE BASE INTERFACES

• An interface can derive from multiple base interfaces.
but a class cannot derive from multiple base classes.

• To illustrate, assume we are building a new set of interfaces that model the automobile behaviors:

• If we were to build a class that implements IJamesBondCar, we would now be responsible for
implementing TurboBoost(), Dive(), and Drive():

• This specialized automobile can now be manipulated as we would expect:

.

All the things you don’t like about your life are actually your best friends & greatest teachers because they help you get

to your destination--your ideal life.

// Here we have an interface with TWO base interfaces.

interface IJamesBondCar: IBasicCar, IUnderwaterCar;
{ void TurboBoos(); }

}
interface IUnderwaterCar
{ void Dive();

}
interface IBasicCar
{ void Drive();

public class JamesBondCar : IJamesBondCar

{
public void Drive()
{

Console.WriteLine("Speeding up...");
}
public void Dive()

{
Console.WriteLine("Submerging...");

}
public void TurboBoost()
{

Console.WriteLine("Blast off!");
}

}

static void Main(string[] args)

{
JamesBondCar j = new JamesBondCar();
j.Drive();
j.TurboBoost();
j.Dive();

}

Output:
Speeding up...
Blast off!
Submerging

C# PROGRAMMING & .NET

97

UNDERSTANDING THE ICONVERTIBLE INTERFACE

• IConvertible type can be used to dynamically convert between data-types.

• Here is the formal definition:

The IConvertible.ToXXXX() Members
• IConvertible interface defines a number of methods of the form ToXXXX().

• ToXXXX() methods provide a way to convert from one data-type into another.

• Sometimes, it may not always be possible to convert between data-types.

For example: from a Boolean into a DateTime.

• If conversion is semantically wrongly formed, the runtime will throw an InvalidCastException.
A Brief Word Regarding IFormatProvider

• ToXXXX() methods take a parameter of type IFormatProvider.

• Objects that implement this interface are able to format their contents based on culture-specific

information.
• Here is the formal definition:

IConvertible.GetTypeCode()

• GetTypeCode() method can be used to programmatically discover a value that represents type-code

of the data-type.
The System.Convert Type

• System namespace defines a data-type named Convert, which echoes the functionality of

IConvertible interface.
• System.Convert does not directly implement IConvertible, however the same set of members are

defined on its default public interface.

Just keep choosing the highest, most loving possible response in every situation. It'll get easier in time, and the results

will be astounding

public interface IConvertible

{
bool ToBoolean(IFormatProvider provider);
char ToChar(IFormatProvider provider);
double ToDouble(IFormatProvider provider);
string ToString(IFormatProvider provider);
int ToInt32(IFormatProvider provider);

}

public interface IFormatProvider

{
object GetFormat(Type formatType);

}

C# PROGRAMMING & .NET

98

BUILDING A CUSTOM ENUMERATOR (IENUMERABLE & IENUMERATOR)

• IEnumerable interface is found within the System.Collections namespace.

• GetEnumerator() method returns a reference to yet another interface named

System.Collections.IEnumerator.

• IEnumerable interface allows the caller to traverse the internal objects contained by the

IEnumerable-compatible container.

• Here is the formal definition:

• The System.Array type already implements IEnumerable & IEnumerator. Consider the following
code:

• Once we have updated our Garage type, we can now safely use the type within the foreach loop.

• Furthermore, given that the GetEnumerator() method has been defined publicly, the object user

could also interact with the IEnumerator type:

The real goal in life is self-revelation.

//This interface informs the caller that the object's subitems can be enumerated.
public interface IEnumerable
{

IEnumerator GetEnumerator();
}

using System.Collections;
public class Garage : IEnumerable
{

// System.Array already implements IEnumerator!
private Car[] carArray;

public Garage()
{

carArray = new Car[4];
carArray[0] = new Car("FeeFee", 200, 0);
carArray[1] = new Car("Clunker", 90, 0);
carArray[2] = new Car("Zippy", 30, 0);

carArray[3] = new Car("Fred", 30, 0);
}

public IEnumerator GetEnumerator()
{

// Return the array object's IEnumerator.
return carArray.GetEnumerator();

}
}

static void Main(string[] args)

{
// Manually work with IEnumerator.

IEnumerator i = carLot.GetEnumerator();
i.MoveNext();
Car myCar = (Car)i.Current;
Console.WriteLine("{0} is going {1} MPH", myCar.PetName,myCar.CurrSpeed);

}

}

// Get the current item (read-only property).
// Reset the cursor before the first member.

// Advance the internal position of the cursor. bool MoveNext ();
object Current { get;}
void Reset ();

// This interface allows the caller to obtain a container's subitems.
public interface IEnumerator
{

C# PROGRAMMING & .NET

99

BUILDING CLONEABLE OBJECTS (ICLONEABLE)

• System.Object defines a member named MemberwiseClone(). This member is used to make a
shallow copy of an object instance.

• Object-users do not call this method directly however, a given object instance may call this method

itself during the cloning process.
• Setting one reference to another reference results in 2 variables pointing to the same object in

memory.

• When we wish to equip our custom types to support the ability to return an identical copy of itself to

the caller, we may implement the standard ICloneable interface.
• Here is the formal definition:

Every experience that intersects with your life comes to you to teach you the lesson you most need to learn to rise to

the next platform of your life.

public interface ICloneable

{
object Clone();

}

// The Point now supports "clone-ability."

public class Point : ICloneable
{

public int x, y;
public Point(){ }
public Point(int x, int y)
{

this.x = x; this.y = y;

}

// Return a copy of the current object.

public object Clone()
{

return new Point(this.x, this.y);
}

public override string ToString()
{

return string.Format("X = {0}; Y = {1}", x, y);
}

}

static void Main(string[] args)
{

// Notice Clone() returns a generic object type.
// You must perform explicit cast to obtain the derived type.
Point p3 = new Point(100, 100);
Point p4 = (Point)p3.Clone();
// Change p4.x (which will not change p3.x).
p4.x = 0;

// Print each object.
Console.WriteLine(p3);
Console.WriteLine(p4);

}

Output:
X = 100; Y = 100
X = 0; Y = 100

C# PROGRAMMING & .NET

100

BUILDING COMPARABLE OBJECTS (ICOMPARABLE)

• This interface can be used to sort an object based on some internal-key.
• When we invoke Sort() method on an array of intrinsic types, we are able to sort the items in the
array from lowest to highest.

• The logic behind CompareTo() is to test the incoming type against the current instance.
Table 6.1 : CompareTo() return values

Zero If this instance is equal to object

Any number less than zero If this instance is less than object

Any number greater than zero If this instance is greater than object

Self-knowledge is the starting point of personal excellence.

int CompareTo(object o);

}
public class Car
{

private int carID;
public int ID
{

get { return carID; }
set { carID = value; }

}
public Car(string name, int currSp, int id)
{

currSpeed = currSp;
petName = name;
carID = id;

}
}
public class Car: IComparable
{

int IComparable.CompareTo(object o)
{

Car temp=(Car)o;
if(this.CarID>temp.CarID)

return 1;
if(this.CarID<temp.CarID)

return -1;
else

return 0;
}

}
public class CarApp
{

public static int Main(string[] args)
{ Car[] myAutos=new Car[3];

myAutos[0]=new Car(112,"mary");
myAutos[1]=new Car(11,"jimmy");
myAutos[2]=new Car(21,"rusty");
Consoe.WriteLine("here is the unordered set of cars");
foreach(Car c in myAutos)
Console.WriteLine("{0} {1}",c.ID,c.PetName);
Array.Sort(myAutos);
Console.WriteLine("here is the ordered set of cars");
foreach(Car c in myAutos)
Console.WriteLine("{0} {1}",c.ID, c.PetName);
return 0;

}
}

// the formal definition interface IComparable
{

Output: here is the unordered set of cars

112 mary

11 jimmy
21 rusty

here is the ordered set of cars

11 jimmy

21 rusty

112 mary

C# PROGRAMMING & .NET

101

EXPLORING THE SYSTEM.COLLECTIONS NAMESPACE

• System.Collections defines a numbers of standard interfaces. For example:

System.Collections
Interface

Meaning

ICollection Defines generic characteristics (e.g., count and thread safety)
for a collection type.

IComparer Defines methods to support the comparison of objects for
equality.

IDictionary Allows an object to represent its contents using name/value

pairs.
IDictionaryEnumerator Enumerates the contents of a type supporting IDictionary.

IEnumerable Returns the IEnumerator interface for a given object.

IEnumerator Generally supports foreach-style iteration of subtypes.

IHashCodeProvider Returns the hash code for the implementing type using a

customized hash algorithm.

IList Provides behavior to add, remove, and index items in a list of

objects.

• Following figure illustrates the relationship between each type of the interfaces:

THE ROLE OF ICOLLECTION
• This interface provides a small set of properties which ca n be used to determine:

a) Number of items in the container

b) The thread-safety of the container

c) The ability to copy the contents into a System.Array type.

• Here is the formal definition:

THE ROLE OF IDICTIONARY

• A dictionary is a collection that allows an object to represent its contents using name/value pairs.

• Here is the formal definition:

Everything that irritates us about others can lead us to an understanding of ourselves.

public interface ICollection: IEnumerable

{
int Count {get;}

bol IsSynchronized { get;}
object SyncRoot{ get; }
void CopyTo(Array array, int index);

}

public interface IDictionary: ICollection, IEnumerable

{
bool IsFixedSize { get; }
ICollection Keys { get;}
ICollection Values { get;}
void Add(object key, object value);
void Remove(object key);
void Clear();

}

C# PROGRAMMING & .NET

102

THE ROLE OF IDICTIONARYENUMERATOR

• This interface allows to list out items in the dictionary via the generic Entry property, which returns a
System.Collections.DictionaryEntry type.
• In addition, we are also able to traverse the name/value pairs using the key/value properties.

• Here is the formal definition:

THE ROLE OF IHASHCODEPROVIDER

• This interface provides the ability to retrieve the hash code for a particular type.

• Here is the formal definition:

THE ROLE OF ILIST
• This provides the ability to insert, remove and index items into (or out of) a container.

• Here is the formal definition:

THE CLASS TYPES OF SYSTEM.COLLECTIONS

System.Collections

Class

Meaning Key Implemented

Interfaces

ArrayList Represents a dynamically sized array of

objects.

IList, ICollection,

IEnumerable, and
ICloneable

Hashtable Represents a collection of objects identified

by a numerical key. Custom types stored

in a Hashtable should always override
System.Object.GetHashCode().

IDictionary,

ICollection,

IEnumerable, and
ICloneable

Queue Represents a standard first-in, first-out

(FIFO) queue.

ICollection,

ICloneable, and

IEnumerable

SortedList Like a dictionary; however, the elements

can also be accessed by ordinal position

(e.g., index).

IDictionary,

ICollection,
IEnumerable, and

ICloneable

Stack A last-in, first-out (LIFO) queue providing

push and pop (and peek) functionality.

ICollection,

ICloneable, and

IEnumerable

The true joy in life appears once it's shared with someone you love.

public interface IDictionaryEnumerator: IEnumerator
{

DictionaryEntry Entry { get;}
object Key { get;}

object Value { get;}
}

public interface IHahCodeProvider

{
int GetHashCode(object obj);

}

public interface IList: ICollection, IEnumerable

{
bool IsFixed{ get;}
int Add(object value);
void Remove(object value);
void Clear();
void Insert(int index, object value)

}

C# PROGRAMMING & .NET

103

WORKING WITH THE ARRAYLIST TYPE

• ArrayList represents a dynamically sized array of objects.

• Insert() allows to plug a new item into the ArrayList at a specified index.

• Here we are making use of the AddRange() method to populate our ArrayList with a set of Car types
(this is basically a shorthand notation for calling Add() n number of times).

• Once we print out the number of items in the collection (as well as enumerate over each item to

obtain the pet name), we invoke Insert().

• The Insert() allows to plug a new item into the ArrayList at a specified index.

• Finally, notice the call to the ToArray() method, which returns a generic array of System.Object types

based on the contents of the original ArrayList.

The journey of life is all about--spotting our weaker areas & healing them so that we eventually find our best selves.

static void Main(string[] args)

{
// Create ArrayList and fill with some initial values.
ArrayList carArList = new ArrayList();
carArList.AddRange(new Car[] { new Car("Fred", 90, 10), new Car("Mary",100, 50), new
Car("MB", 190, 11)});

Console.WriteLine("Items in carArList: {0}", carArList.Count);

// Print out current values.
foreach(Car c in carArList)

Console.WriteLine("Car pet name: {0}", c.PetName);

// Insert a new item.

Console.WriteLine("\n->Inserting new Car.");
carArList.Insert(2, new Car("TheNewCar", 0, 12));
Console.WriteLine("Items in carArList: {0}", carArList.Count);

// Get object array from ArrayList and print again.
object[] arrayOfCars = carArList.ToArray();

for(int i = 0; i < arrayOfCars.Length; i++)
{

Console.WriteLine("Car pet name:{0}",((Car)arrayOfCars[i]).PetName);

}
}

C# PROGRAMMING & .NET

104

WORKING WITH THE QUEUE TYPE

• Queues are containers that ensures that items are accessed using a first-in, first-out manner.

Member of
Queue type

Meaning

Dequeue() Removes and returns the object at the beginning of the
Queue

Enqueue() Adds an object to the end of the Queue

Peek() Returns the object at the beginning of the Queue without
removing it

The soul would rather fail at its own life than succeed at someone else's.

public static void WashCar(Car c)

{
Console.WriteLine("cleaning {0}",c.PetName);

}

static void Main(string[] args)
{

// make a Q with three items
Queue carWashQ=new Queue();
carWashQ.Enqueue(new Car("firstcar",0,0));
carWashQ.Enqueue(new Car("secondcar",0,0));
carWashQ.Enqueue(new Car("thirdcar",0,0));
Console.WriteLine("first in Q is{0}",((Car)carWashQ.Peek()).PetName);

//remove each item from Q
WashCar((Car)carWashQ.Dequeue());
WashCar((Car)carWashQ.Dequeue());
WashCar((Car)carWashQ.Dequeue());

//try to de-Q again?
try
{

WashCar((Car)carWashQ.Dequeue());
}

catch(Exception e)
{

Console.WriteLine("error {0}",e.Message);
}

}

Output

first in Q is firstcar
cleaning firstcar
cleaning secondcar
cleaning thirdcar
error! Queue empty

C# PROGRAMMING & .NET

105

WORKING WITH THE Stack TYPE

• Stacks represent a collection that maintains items using a last-in, first-out manner.

• This defines following members:

Member of

Stack type

Meaning

Push() Used to place items onto the stack

Pop() Used to remove items from the stack.

Peek() Returns the object at the beginning of the stack without
removing it.

The only devils in the world are those running in our own hearts. That is where the battle should be fought.

static void Main(string[] args)

{
...
Stack stringStack = new Stack();
stringStack.Push("One");
stringStack.Push("Two");
stringStack.Push("Three");

// Now look at the top item, pop it, and look again.
Console.WriteLine("Top item is: {0}", stringStack.Peek());
Console.WriteLine("Popped off {0}", stringStack.Pop());
Console.WriteLine("Top item is: {0}", stringStack.Peek());
Console.WriteLine("Popped off {0}", stringStack.Pop());
Console.WriteLine("Top item is: {0}", stringStack.Peek());
Console.WriteLine("Popped off {0}", stringStack.Pop());

try
{

Console.WriteLine("Top item is: {0}", stringStack.Peek());
Console.WriteLine("Popped off {0}", stringStack.Pop());

}

catch(Exception e)
{ Console.WriteLine("Error!! {0}", e.Message); }

}

Output:

top item is:three
popped off:three
top item is:two
popped off:two
top item is:one
popped off:one
error! Stack empty

C# PROGRAMMING & .NET

106

SYSTEM.COLLECTIONS.SPECIALIZED NAMESPACE
System.Collections.Specialized Meaning

CollectionsUtil Creates collections that ignore the case in strings

HybridDictionary Implements Dictionary by using a ListDictionary when

the collection is small, and then switching to a

Hashtable when the collection gets large

ListDictionary Implements IDictionary using a singly linked-list.

Recommended for collections that typically contain 10
items or less

NameObjectCollectionBase Provides the abstract base class for a sorted

collection of associated String keys and Object values
that can be accessed either with the key or with the

index

NameObjectCollectionBase
KeysCollection

Represents
collection

a collection of the string keys of a

NameValueCollection Represents a sorted collection of associated string-

keys and string-values that can be accessed either
with the key or with the index

StringCollection Represents a collection of strings

StringDictionary Implements a hash-table with the key strongly typed

to be a string rather than an object
StringEnumerator Supports a simple iteration over a StringCollection

EXERCISES

1) Bring out the differences between interface and abstract base classes. (6)
2) How do you implement an interface? Explain with an example. (6)
3) Explain different techniques for invoking interface members at object level. (6)
4) Explain with example, explicit interface implementation. (6)
5) Explain with example, interface hierarchy. (6)
6) Explain with example, multiple base interfaces. (4)
7) How do you pass interface as parameter to a method? Explain with an example. (4)
8) Explain the concept of interface-based polymorphism. (4)
9) Explain any two methods of IConvertible interface. (6)
10) Explain usage of IEnumerable & IEnumerator interfaces with suitable examples. (6)
11) What do you mean by cloneable object? Write an example to depict the implementation
of ICloneable Interface. (6)

12) Illustrate with an example, implementation of IComparable interface. (6)
13) List out & explain interfaces provided by System.Collection namespace. Draw diagram
to show hierarchical relationship that exists b/w these interfaces. (6)

14) What are the major classes in System.Collections namespace? Explain. (4)
15) Write a code segment to illustrate the working of ArrayList class. (4)
16) What the members of System.Collection.Queue? Explain. (4)
17) Write a code snippet to show the usage of Stack class. (4)

NOTE: Since this is a programming subject, you can expect atleast 50% of the questions on C# programs in the

examination. So, here I am providing a link from which you can download C# programs from Balagurusamy text

book as per the syllabus.

http://vtunotesbysri.weebly.com/uploads/4/2/5/8/42583203/c_sharp_balguruswamy_programs.rar

We all must let our lives speak for themselves.

http://vtunotesbysri.weebly.com/uploads/4/2/5/8/42583203/c_sharp_balguruswamy_programs.rar

